Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Granata, A. (2007) Polynomial Asymptotic Expansions in the Real Domain: The Geometric, the Factorizational, and the Stabilization Approaches. Analysis Mathematica, 33, 161-198. http://dx.doi.org/10.1007/s10476-007-0301-0
has been cited by the following article:
TITLE: Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II-C: Constructive Algorithms for Canonical Factorizations and a Special Class of Asymptotic Scales
AUTHORS: Antonio Granata
KEYWORDS: Asymptotic Expansions, Canonical Factorizations of Disconjugate Operators, Algorithms for Canonical Factorizations, Chebyshev Asymptotic Scales
JOURNAL NAME: Advances in Pure Mathematics, Vol.5 No.8, June 30, 2015
ABSTRACT: This part II-C of our work completes the factorizational theory of asymptotic expansions in the real domain. Here we present two algorithms for constructing canonical factorizations of a disconjugate operator starting from a basis of its kernel which forms a Chebyshev asymptotic scale at an endpoint. These algorithms arise quite naturally in our asymptotic context and prove very simple in special cases and/or for scales with a small numbers of terms. All the results in the three Parts of this work are well illustrated by a class of asymptotic scales featuring interesting properties. Examples and counterexamples complete the exposition.
Related Articles:
The Role of Asymptotic Mean in the Geometric Theory of Asymptotic Expansions in the Real Domain
Antonio Granata
DOI: 10.4236/apm.2015.52013 5,137 Downloads 5,552 Views Citations
Pub. Date: February 26, 2015
Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II-A: The Factorizational Theory for Chebyshev Asymptotic Scales
DOI: 10.4236/apm.2015.58045 4,597 Downloads 4,913 Views Citations
Pub. Date: June 30, 2015
Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II-B: Solutions of Differential Inequalities and Asymptotic Admissibility of Standard Derivatives
DOI: 10.4236/apm.2015.58046 4,780 Downloads 5,096 Views Citations
Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II-C: Constructive Algorithms for Canonical Factorizations and a Special Class of Asymptotic Scales
DOI: 10.4236/apm.2015.58047 4,601 Downloads 4,902 Views Citations
On the Spectrum of Asymptotic Expansions for an Asymptotic Normal Sequence
Min Tsao
DOI: 10.4236/ojs.2012.21010 3,448 Downloads 5,699 Views Citations
Pub. Date: January 6, 2012