SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Ramamoorthy, P. (1960) Superposability of Two Axi-Symmetric Flows under Axi-Symmetric Magnetic Fields. Applied Scientific Research, 9, 153-156.

has been cited by the following article:

  • TITLE: Superposability in Hydrodynamic and MHD Flow

    AUTHORS: Shruti Rastogi, Brijender Nath Kaul, Sanjeev Rajan

    KEYWORDS: Superposability, Hydrodynamics and Magneto-Hydrodynamics, MHD Flow

    JOURNAL NAME: Open Journal of Fluid Dynamics, Vol.5 No.2, June 15, 2015

    ABSTRACT: In this paper, phenomena of superposability and self superposability in hydrodynamics and magneto hydrodynamics have been discussed. One of the most important applications of superposability in hydrodynamics is the construction of exact analytic solution of the basic equation of fluid dynamics. Kapur and Bhatia have given a simple idea that if two velocity vectors have self superposable and mutually superposable motion then sum or difference of these two is self superposable and vice versa and if each of the vector is superposable on the third then their sum and difference are also superposable on the third. For superposability in magneto-hydrodynamics many mathematicians like Ram Moorthy, Ram Ballabh, Mittal, Kapur & Bhatia and Gold & Krazyblocki have defined it in various ways, especially Kapur & Bhatia generalized the well-known work on superposability by Ram Ballabh to the case of viscous incompressible electrically conducting fluids in the presence of magnetic field. We found the relationship of two basic vectors for two important curvilinear coordinate systems for their use in our work. We’ve found the equations of div, curl and grad for a unit vector in parabolic cylinder coordinates and ellipsoidal coordinates for further use.