Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Giddings, S.B. and Nelson, P. (1988) The Geometry of Super Riemann Surfaces. Communications in Mathematical Physics, 116, 607-634. http://dx.doi.org/10.1007/BF01224903
has been cited by the following article:
TITLE: Super Characteristic Classes and Riemann-Roch Type Formula
AUTHORS: Tadashi Taniguchi
KEYWORDS: Superspace, Super Characteristic Class, Complex Supercurve with Genus g, SUSY Structure, Cohomology of Helicity Group
JOURNAL NAME: Advances in Pure Mathematics, Vol.5 No.6, May 25, 2015
ABSTRACT: The main purpose of this article is to define the super characteristic classes on a super vector bundle over a superspace. As an application, we propose the examples of Riemann-Roch type formula. We also introduce the helicity group and cohomology with respect to coefficient of the helicity group. As an application, we propose the examples of Gauss-Bonnet type formula.
Related Articles:
Spacetime Geometry and the Laws of Physics
D. M. Kalassa
DOI: 10.4236/jmp.2017.83022 1,318 Downloads 1,905 Views Citations
Pub. Date: February 28, 2017
Super Characteristic Classes and Riemann-Roch Type Formula
Tadashi Taniguchi
DOI: 10.4236/apm.2015.56034 2,884 Downloads 3,385 Views Citations
Pub. Date: May 25, 2015
On the Prime Geodesic Theorem for Non-Compact Riemann Surfaces
Muharem Avdispahić, Dženan Gušić
DOI: 10.4236/apm.2016.612068 1,027 Downloads 1,548 Views Citations
Pub. Date: November 22, 2016
Geometry of the Standard Model of Quantum Physics
Claude Daviau, Jacques Bertrand
DOI: 10.4236/jamp.2015.31007 5,694 Downloads 6,680 Views Citations
Pub. Date: January 28, 2015
Mathematical Physics in Diffusion Problems
Takahisa Okino
DOI: 10.4236/jmp.2015.614217 3,365 Downloads 4,266 Views Citations
Pub. Date: November 27, 2015