Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Taniguchi, T. (2009) ADHM Construction of Super Yang-Mills Instantons. Journal of Geometry and Physics, 59, 1199-1209. http://dx.doi.org/10.1016/j.geomphys.2009.06.003
has been cited by the following article:
TITLE: Super Characteristic Classes and Riemann-Roch Type Formula
AUTHORS: Tadashi Taniguchi
KEYWORDS: Superspace, Super Characteristic Class, Complex Supercurve with Genus g, SUSY Structure, Cohomology of Helicity Group
JOURNAL NAME: Advances in Pure Mathematics, Vol.5 No.6, May 25, 2015
ABSTRACT: The main purpose of this article is to define the super characteristic classes on a super vector bundle over a superspace. As an application, we propose the examples of Riemann-Roch type formula. We also introduce the helicity group and cohomology with respect to coefficient of the helicity group. As an application, we propose the examples of Gauss-Bonnet type formula.
Related Articles:
On the Cohomological Derivation of Yang-Mills Theory in the Antifield Formalism
Ashkbiz Danehkar
DOI: 10.4236/jhepgc.2017.32031 943 Downloads 1,336 Views Citations
Pub. Date: April 30, 2017
On New Solutions of Classical Yang-Mills Equations with Cylindrical Sources
Alexander S. Rabinowitch
DOI: 10.4236/am.2010.11001 5,021 Downloads 9,409 Views Citations
Pub. Date: June 2, 2010
From Yang-Mills Photon in Curved Spacetime to Dark Energy Density
Mohamed S. El Naschie
DOI: 10.4236/jqis.2013.34016 6,149 Downloads 9,835 Views Citations
Pub. Date: November 28, 2013
Conformal Evolution of Waves in the Yang-Mills Condensate: The Quasi-Classical Approach
Roman Pasechnik, George Prokhorov, Grigory Vereshkov
DOI: 10.4236/jmp.2014.55032 3,982 Downloads 4,827 Views Citations
Pub. Date: March 28, 2014
Spacetime Geometry and the Laws of Physics
D. M. Kalassa
DOI: 10.4236/jmp.2017.83022 1,319 Downloads 1,908 Views Citations
Pub. Date: February 28, 2017