Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

DeLoach, C., Carruthers, R.I., Lovich, J.E., Dudley, T.L. and Smith, S.D. (2000) Ecological Interactions in the Biological Control of Saltcedar (Tamarix spp.) in the United States: Toward a New Understanding. In: Spencer, N.R., Ed., Proceedings of the X International Symposium on Biological Control of Weeds, Montana State University Press, Bozeman, 819-873.

has been cited by the following article:

  • TITLE: Interactions among Tamarix (Tamaricaceae), Opsius stactogalus (Cicadellidae), and Litter Fungi Limit Riparian Plant Establishment

    AUTHORS: Gibney M. Siemion, Lawrence E. Stevens

    KEYWORDS: Herbivore, Honeydew, Invasion Ecology, Multi-Trophic Interaction, Opsius stactogalus, Riparian, Tamarix

    JOURNAL NAME: Advances in Entomology, Vol.3 No.2, April 24, 2015

    ABSTRACT: One of the most significant plant invasions in the U.S. has been that of the Old World genus Tamarix. While Tamarix spp. is widely studied, surprisingly little is known about more complex trophically-linked community mechanisms influencing under-canopy succession. We investigated multi- trophic interactions among Tamarix spp., nonnative host-specific Opsius stactogalus leafhopper distribution and honeydew production, and the Tamarix spp. canopy floor fungal assemblage. We quantified leafhopper abundance and honeydew throughfall, and tested under-canopy seed viability and seedling mortality across a 1600 m elevation gradient in the lower Colorado River basin in 2007. We conducted field and laboratory experiments in 2007-08 to test the effects of Tamarix spp. litter fungi, synthetic honeydew, and the combination of those variables on germination and seedling survivorship of three common, co-occurring phreatophyte (riparian groundwater-dependent plant) species. Tamarix spp. litter and honeydew treatments reduced understory seed viability and recruitment of two native, woody riparian species (Populus fremontii and Baccharis salicina), as well as Tamarix spp. Four major patterns were detected. 1) Litter fungi alone and synthetic honeydew alone reduced seed viability and seedling survivorship of all three species by two- to four-fold. 2) Synthetic honeydew + litter reduced Tamarix spp. and P. fremontii seed and seedling viability by up to 10-fold. 3) Synthetic honeydew concentration and seedling mortality were positively related among all three plant species. 4) B. salicina was less susceptible to all treatments than Tamarix spp. and P. fremontii. These results indicate that complex interactions among nonnative Tamarix spp., nonnative Opsius leafhopper honeydew production, and soil fungi may influence riparian phreatophyte recruitment and succession.