Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

J. I. Izpura, “On the electrical origin of flicker noise in vacuum devices,” IEEE Trans Instrum. Meas., Vol. 58, No. 10, 2009, pp. 3592-3601.

has been cited by the following article:

  • TITLE: Revisiting the Classics to Recover the Physical Sense in Electrical Noise

    AUTHORS: Jose-Ignacio Izpura

    KEYWORDS: Quantum-Compliant, Noise Model, Fluctuation-Dissipation Theorem, Cause-Effect, Action-Reaction

    JOURNAL NAME: Journal of Modern Physics, Vol.2 No.6, June 30, 2011

    ABSTRACT: This paper shows a physically cogent model for electrical noise in resistors that has been obtained from Thermodynamical reasons. This new model derived from the works of Johnson and Nyquist also agrees with the Quantum model for noisy systems handled by Callen and Welton in 1951, thus unifying these two Physical viewpoints. This new model is a Complex or 2-D noise model based on an Admittance that considers both Fluctuation and Dissipation of electrical energy to excel the Real or 1-D model in use that only considers Dissipation. By the two orthogonal currents linked with a common voltage noise by an Admittance function, the new model is shown in frequency domain. Its use in time domain allows to see the pitfall behind a paradox of Statistical Mechanics about systems considered as energy-conserving and deterministic on the microscale that are dissipative and unpredictable on the macroscale and also shows how to use properly the Fluctuation-Dissipation Theorem.