Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Dai, X. and Jeffrey, M.I. (2006) The Effect of Sulphide Minerals on the Leaching of Gold in Aerated Cyanide Solutions. Hydrometallurgy, 82, 118-125. http://dx.doi.org/10.1016/j.hydromet.2006.03.005

has been cited by the following article:

  • TITLE: Recovery of Gold and Silver and Removal of Copper, Zinc and Lead Ions in Pregnant and Barren Cyanide Solutions

    AUTHORS: Gabriela Figueroa, Jesus L. Valenzuela, Jose R. Parga, Victor Vazquez, Alejandro Valenzuela

    KEYWORDS: Electrochemical Process, Precipitation Process, Gold and Silver Cyanides

    JOURNAL NAME: Materials Sciences and Applications, Vol.6 No.2, February 12, 2015

    ABSTRACT: Over the past decade the concern about toxic metals in freshwater has increased. Environmental laws such as the Clean Water Act have forced industries that produce metal containing wastewater to treat their wastewater prior to discharge. The purpose of this study was to investigate the use of a novel method for the minimization of heavy metals in the wastewater from the mining industry. A very promising electrochemical treatment technique that does not require chemical additions is electrocoagulation (EC) and sulphide precipitation. The present study has been done for the recovery of gold and silver contained in pregnant solution from the cyanidation process using the electrocoagulation technology with iron electrodes; that is a developed alternative technology for the Merril-Crowe process. The average gold and silver content in pregnant solution was 4.27 and 283 ppm respectively and the recoveries were 92% for gold and 95% for silver, with optimum operating parameters of pH 10, residence time of 20 minutes and addition of sodium chloride of 4 gr/L. The results of precipitation process show that the elimination of lead, zinc, cooper and iron ions from the barren solution was successful, with optimum operating parameters of pH 3 and residence time of 15 minutes, and the recoveries were 99% of these ions. Finally the characterization of the solid products of gold and silver formed during the EC process with Scanning Electronic Microscope was performed. Results suggest that magnetite particles and amorphous iron oxyhydroxides (lepidocrocite) were present.