Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Liu, H.Q., Qiu, Y., Mu, Y., Zhang, X.J., Liu, L., Hou, X.H., Zhang, L., Xu, X.N., Ji, A.L., Cao, R., Yang, R.H. and Wang, F. (2013) A High Ratio of Dietary n-3/n-6 Polyunsaturated Fatty Acids Improves Obesity-Linked Inflammation and Insulin Resistance through Suppressing Activation of TLR4 in SD Rats. Nutrition Research, 33, 849-858. http://dx.doi.org/10.1016/j.nutres.2013.07.004

has been cited by the following article:

  • TITLE: F1 Offspring of (F0) Female Rats Fed a High-Saturated Fat, Prenatal/Lactation Diet Remain Insulin Resistant Despite Postnatal Diet Rich in Omega-3 Polyunsaturated Fatty Acids

    AUTHORS: Julie J. Kachinski, Hongbin Jin, Daniel C. Benyshek

    KEYWORDS: Developmental Origins, Omega-3 LC-PUFAs, Insulin Resistance, Animal Modelling

    JOURNAL NAME: Open Journal of Endocrine and Metabolic Diseases, Vol.4 No.12, December 29, 2014

    ABSTRACT: Prior research has shown adult diets rich in omega-3 long-chain polyunsaturated fatty acids (omega-3 LC-PUFAs) can improve adult metabolic health. Previous studies have also shown maternal overnutrition during pregnancy/lactation adversely affects metabolic functioning in adult offspring. The purpose of the current study was to investigate the interaction of these two metabolism regulating factors by assessing the effectiveness of a postweaning diet rich in omega-3 long chain-polyunsaturated fatty acids (omega-3 LC-PUFAs) to improve metabolic function in adult offspring whose mothers were fed a high-saturated fat “Western” diet during pregnancy/lactation. We compared metabolic function between offspring of three prenatal-lactation/postweaning diet lines of Sprague-Dawley rats: 1) offspring of mothers fed a high-saturated fat “Western” diet during pregnancy-lactation, then weaned to a high omega-3 LC-PUFA diet (Western/PUFA); 2) offspring of mothers fed a control diet during pregnancy-lactation, then weaned to a high omega-3 LC-PUFA diet (Control/PUFA); and 3) offspring of mothers fed a Western diet during pregnancylactation, and postweaning (Western/Western). Fasting plasma insulin, triglycerides, and insulin resistance (HOMA-IR) of Western/PUFA animals were intermediate to those of Western/Western and Control/PUFA offspring, although these differences did not reach statistical significance. This suggests the metabolic benefits of an omega-3 LC-PUFA-rich diet are insufficient to overcome the deleterious effects of a high-saturated fat prenatal-lactation diet.