Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Huttunen, K.E.J., Koskinen, H.E.J. and Schwenn, R. (2002) Variability of Magnetospheric Storms Driven by Different Solar Wind Perturbations. Journal of Geophysical Research, 107, JA900171.

has been cited by the following article:

  • TITLE: Relation between Solar Wind Parameter and Geomagnetic Storm Condition during Cycle-23

    AUTHORS: Balveer S. Rathore, Dinesh C. Gupta, K. K. Parashar

    KEYWORDS: Geomagnetic Storm, Interplanetary Magnetic Field (IMF), Disturbance Storm Time (Dst), Solar Cycle

    JOURNAL NAME: International Journal of Geosciences, Vol.5 No.13, December 26, 2014

    ABSTRACT: In the present paper dependence of geomagnetic activity on the solar-wind plasma and interplanetary magnetic field (IMF) parameters has been studied. We have taken interplanetary solar wind data at the instant of Dst minimum. Our study consists of 200 geomagnetic storms weighed by disturbance storm time (Dst) -50 nT, observed during solar cycle 23. The study suggests that the strength of the geomagnetic storm is strongly dependent on the total magnetic field Btotal. The correlation (-0.72) has been found reasonable. In perspective of previous studies, the strength of the geomagnetic storm is strongly dependent on the southward component (Bz) whereas in present study exposes that the correlation (0.22) is weak. This result indicates that solar wind southward magnetic field component Bz has significant growth particularly before the main phase of geomagnetic storm (not during the main phase). The present result implies that neither density nor temperature is significantly related to the variation of geomagnetic disturbance; rather the effects of the pressure and speed. However, a low plasma beta during highly geoeffective event seems to be an important criterion.