SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

de la Torre, J., & Chen, J. (2011). Estimating Different Reduced Cognitive Diagnosis Models Using a General Framework. Paper Presented at the Annual Meeting of the National Council on Measurement in Education, New Orleans.

has been cited by the following article:

  • TITLE: A Procedure for Diagnostically Modeling Extant Large-Scale Assessment Data: The Case of the Programme for International Student Assessment in Reading

    AUTHORS: Jinsong Chen, Jimmy de la Torre

    KEYWORDS: CDM, Q-Matrix, Large-Scale Assessment, Fit Measures, PISA

    JOURNAL NAME: Psychology, Vol.5 No.18, November 24, 2014

    ABSTRACT: Cognitive diagnosis models (CDMs) are psychometric models developed mainly to assess examinees’ specific strengths and weaknesses of a set of skills or attributes within a domain. Recently, several methodological developments have been added to the CDM literature, which include the development of general and reduced CDMs, various absolute and relative fit measures at both the test and item levels, and a general Q-matrix validation procedure. Building on these developments, this research proposes a systematic procedure to diagnostically model extant large-scale assessment data. The procedure can be divided into four phases: construction of initial attributes and Q-matrices, construction of final attributes and Q-matrix, evaluation of reduced CDMs, and crossvalidation of the selected model. Working with language experts, we use data from the PISA 2000 reading assessment to illustrate the procedure.