Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Khraisheh, M.A.M., Al-Ghouti, M.A., Allen, S.J. and Ahmad, M.N. (2005) Effect of OH and Silanol Groups in the Removal of Dyes from Aqueous Solution Using Diatomite. Water Research, 39, 922-932.

has been cited by the following article:

  • TITLE: Removal of Safranin-O from Aqueous Solution by Adsorption onto Kaolinite Clay

    AUTHORS: Kayode O. Adebowale, Bamidele I. Olu-Owolabi, Emmanuel C. Chigbundu

    KEYWORDS: Basic Red 2, Kaolinite, Adsorption, Kinetic, Thermodynamic, Surface Area

    JOURNAL NAME: Journal of Encapsulation and Adsorption Sciences, Vol.4 No.3, September 26, 2014

    ABSTRACT: In this study, Natural Raw Kaolinite (NRK) clay was used as an adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of a cationic dye Safranine-O, also known as Basic Red 2 (BR2) from aqueous solution. The effects of pH, temperature, initial dye concentration and contact time on the adsorption capacity were evaluated and the adsorbent was characterized by XRD, BET and FTIR. The pseudo-first-order, pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted very well with the pseudo-second-order kinetic model and also followed intraparticle diffusion model revealing that diffusion is not only the rate-controlling step. The Langmuir Freundlich and Dubinin-Radushkevic adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The Langmuir model agrees with experimental data well. The activation energy, change of Gibbs free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of BR2 onto NRK.