Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Kobayashi, S. and Nomizu, K. (1963) Foundations of Differential Geometry. Vol. 1, Wiley, New York.

has been cited by the following article:

  • TITLE: Embeddings of Almost Hermitian Manifold in Almost Hyper Hermitian Manifold and Complex (Hypercomplex) Numbers in Riemannian Geometry

    AUTHORS: Alexander A Ermolitski

    KEYWORDS: Riemannian Manifolds, Almost Hermitian and Almost Hyper Hermitian Structures, Tangent Bundle

    JOURNAL NAME: Applied Mathematics, Vol.5 No.16, August 29, 2014

    ABSTRACT: Tubular neighborhoods play an important role in differential topology. We have applied these constructions to geometry of almost Hermitian manifolds. At first, we consider deformations of tensor structures on a normal tubular neighborhood of a submanifold in a Riemannian manifold. Further, an almost hyper Hermitian structure has been constructed on the tangent bundle TM with help of the Riemannian connection of an almost Hermitian structure on a manifold M then, we consider an embedding of the almost Hermitian manifold M in the corresponding normal tubular neighborhood of the null section in the tangent bundle TM equipped with the deformed almost hyper Hermitian structure of the special form. As a result, we have obtained that any Riemannian manifold M of dimension n can be embedded as a totally geodesic submanifold in a Kaehlerian manifold of dimension 2n (Theorem 6) and in a hyper Kaehlerian manifold of dimension 4n (Theorem 7). Such embeddings are “good” from the point of view of Riemannian geometry. They allow solving problems of Riemannian geometry by methods of Kaehlerian geometry (see Section 5 as an example). We can find similar situation in mathematical analysis (real and complex).