Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Efron, B. and Tibshirani, R. (1986) Bootstrap Measures for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science, 1, 54-77. http://dx.doi.org/10.1214/ss/1177013815
has been cited by the following article:
TITLE: Truncated Geometric Bootstrap Method for Time Series Stationary Process
AUTHORS: T. O. Olatayo
KEYWORDS: Truncated Geometric Bootstrap Method, Stationary Process, Moving Block and Geometric Stationary Bootstrap Method
JOURNAL NAME: Applied Mathematics, Vol.5 No.13, July 18, 2014
ABSTRACT: This paper introduced a bootstrap method called truncated geometric bootstrap method for time series stationary process. We estimate the parameters of a geometric distribution which has been truncated as a probability model for the bootstrap algorithm. This probability model was used in resampling blocks of random length, where the length of each blocks has a truncated geometric distribution. The method was able to determine the block sizes b and probability p attached to its random selections. The mean and variance were estimated for the truncated geometric distribution and the bootstrap algorithm developed based on the proposed probability model.
Related Articles:
Universality in Statistical Measures of Trajectories in Classical Billiard Systems
Jean-François Laprise, Ahmad Hosseinizadeh, Helmut Kröger
DOI: 10.4236/am.2015.68132 2,950 Downloads 3,452 Views Citations
Pub. Date: July 30, 2015
Normal and Bootstrap Confidence Intervals in Bitterlich Sampling
Georgios Stamatellos, Aristeidis Georgakis
DOI: 10.4236/ojf.2020.101005 273 Downloads 450 Views Citations
Pub. Date: December 13, 2019
Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures
Julio Cesar Bastos de Figueiredo, Luis Diambra, Coraci Pereira Malta
DOI: 10.4236/am.2011.24055 5,471 Downloads 9,011 Views Citations
Pub. Date: March 31, 2011
Statistical Significance of Geographic Heterogeneity Measures in Spatial Epidemiologic Studies
Min Lian
DOI: 10.4236/ojs.2015.51006 3,645 Downloads 4,054 Views Citations
Pub. Date: February 6, 2015
Bootstrap Confidence Intervals for Proportions of Unequal Sized Groups Adjusted for Overdispersion
Olivia Wanjeri Mwangi, Ali Islam, Orawo Luke
DOI: 10.4236/ojs.2015.56052 3,008 Downloads 3,594 Views Citations
Pub. Date: October 13, 2015