Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Finney, D.J. (1949) The Truncated Binomial Distribution. Annals of Eugenics, 14, 319-328. http://dx.doi.org/10.1111/j.1469-1809.1947.tb02410.x
has been cited by the following article:
TITLE: Truncated Geometric Bootstrap Method for Time Series Stationary Process
AUTHORS: T. O. Olatayo
KEYWORDS: Truncated Geometric Bootstrap Method, Stationary Process, Moving Block and Geometric Stationary Bootstrap Method
JOURNAL NAME: Applied Mathematics, Vol.5 No.13, July 18, 2014
ABSTRACT: This paper introduced a bootstrap method called truncated geometric bootstrap method for time series stationary process. We estimate the parameters of a geometric distribution which has been truncated as a probability model for the bootstrap algorithm. This probability model was used in resampling blocks of random length, where the length of each blocks has a truncated geometric distribution. The method was able to determine the block sizes b and probability p attached to its random selections. The mean and variance were estimated for the truncated geometric distribution and the bootstrap algorithm developed based on the proposed probability model.
Related Articles:
Stochastic Orders Comparisons of Negative Binomial Distribution with Negative Binomial—Lindley Distribution
Chookait Pudprommarat, Winai Bodhisuwan
DOI: 10.4236/ojs.2012.22025 4,069 Downloads 7,319 Views Citations
Pub. Date: April 23, 2012
Estimation of Parameter in a New Truncated Distribution
G. Nanjundan
DOI: 10.4236/ojs.2013.34025 6,502 Downloads 8,083 Views Citations
Pub. Date: August 16, 2013
Mean Difference of Truncated Normal Distribution
Giovanni Girone, Antonella Massari, Fabio Manca, Claudia Marin
DOI: 10.4236/am.2020.1111078 36 Downloads 179 Views Citations
Pub. Date: November 20, 2020
On a Characterization of Zero-Inflated Negative Binomial Distribution
R. Suresh, G. Nanjundan, S. Nagesh, Sadiq Pasha
DOI: 10.4236/ojs.2015.56053 3,442 Downloads 4,253 Views Citations
Pub. Date: October 13, 2015
An Analytical Portfolio Credit Risk Model Based on the Extended Binomial Distribution
Sven Fischer
DOI: 10.4236/jfrm.2019.83012 470 Downloads 939 Views Citations
Pub. Date: September 26, 2019