Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

D. Charlesworth and F.R. Ganders, “The Population Genetics of Gynodioecy with Cytoplasmic-Genic Male-Sterility,” Heredity, Vol. 43, 1979, pp. 213-218.
http://dx.doi.org/10.1038/hdy.1979.76

has been cited by the following article:

  • TITLE: Nucleocytoplasmic Gynodioecy

    AUTHORS: R. Doroteo, J. A. Vargas

    KEYWORDS: Population Genetics; Gynodioecy; Dynamical System; Nucleocytoplasmic Interaction; Matrix of Linear Forms

    JOURNAL NAME: Applied Mathematics, Vol.4 No.12, December 3, 2013

    ABSTRACT: We study the evolution of a gynodioecious species under mixed-mating through a nucleocytoplasmic male sterility model. We consider two cytoplasmic types and a nuclear locus with two alleles. Here, the interaction between one cytoplasmic type and a recessive nuclear male-sterility factor gives rise to only one female genotype, while the remaining types correspond to hermaphroditic plants. We include two fitness paramaters: the advantageous female fitness t of females relative to that of hermaphrodites; and a silent and dominant cost of restoration, that is, a diminished fitness for plants carrying a dominant restorer gene relative to that of hermaphrodites. The parameter related to the cost of restoration is assumed to be present on outcrossing male fertility only. We find that every population converges to a stable population. We also determine the nature of the attracting stable population, which could be a nucleocytoplasmic polymorphism, a nuclear polymorphism or another population with some genotypes absent. This depends on the position of t with respect to critical values expressed in terms of the other parameters and also on the initial population.