SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

P. Erdos and R. L.Graham, Journal of Combinatorial Theory, Series A, Vol. 19, 1975, pp. 119-123. doi:10.1016/0097-3165(75)90099-0

has been cited by the following article:

  • TITLE: Holographic Bound in Quantum Field Energy Density and Cosmological Constant

    AUTHORS: Paolo Castorina

    KEYWORDS: Cosmological Constant; Holography; Quantum Fields

    JOURNAL NAME: Journal of Modern Physics, Vol.4 No.6, June 17, 2013

    ABSTRACT: The cosmological constant problem is reanalyzed by imposing the limitation of the number of degrees of freedom (d.o.f.) due to entropy bounds directly in the calculation of the energy density of a field theory. It is shown that if a quantum field theory has to be consistent with gravity and holography, i.e. with an upper limit of storing information in a given area, the ultraviolet momentum cut-off is not the Planck mass, Mp, as naively expected, but where Nu is the number of d.o.f. of the universe. The energy density evaluation turns out completely consistent with Bousso’s bound on the cosmological constant value. The scale , that in the “fat graviton” theory corresponds to the graviton size, originates by a self-similar rearrangement of the elementary d.o.f. at different scales that can be seen as an infrared-ultraviolet connection.