SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

A. Kleeberg, M. Hupfer and G. Gust, "Quantification of phosphorus entrainment in a lowland river by in situ and laboratory resuspension experiments," Aquatic Sciences, Vol. 70, 2008, pp. 87-99.

has been cited by the following article:

  • TITLE: Phosphorus Release from Sediments in a Riparian Phragmites australis Community at the Estuary of the Chikugogawa River, Western Japan

    AUTHORS: Akira Haraguchi

    KEYWORDS: Phosphorus Mobilization; Productivity; Redox Potential; Riparian Plant Community; Salt Marsh

    JOURNAL NAME: American Journal of Plant Sciences, Vol.3 No.7, July 9, 2012

    ABSTRACT: In order to determine the contribution of aquatic macrophyte communities on nutrition to sustain the high primary productivity of an estuary aquatic community, we analyzed the process of phosphorus release from sediments in aquatic macrophyte community in the estuary of the Chikugogawa River, South-Western Japan. Vertical profile of PD3-4 concentration and redox potential (Eh) of pore water in sediments were investigated within and outside the Phragmites australis community. Sediment horizon lower than 23 cm layer from the surface showed anaerobic (Eh australis community, whereas sediment was constantly oxic (Eh > 0 mV) up to 50 cm depth outside the P. australis community without organic matter accumulation. Non-vegetated sediment with organic matter accumulation showed anoxic profile as vegetated site. PD3-4 concentration in anaerobic parts of sediment showed higher than oxic parts, and higher PD3-4 concentration in sediment pore water corresponded to sulfur deposition in sediment. Sulfate ion supplied from the sea water is reduced under the anoxic condition and S2- reacts with water-insoluble phosphorus salts e.g. Fe3(PO4)2 or AlPO4 and Fe2S3 or Al2S3 precipitates. Thus PD3-4 was mobilized and released under anoxic sediments. P. australis supply organic litter to sediment and the sediment within the P. australis community showed anoxic after aerobic decomposition of organic substances in sediment. Incubation of sediments under N2 atmosphere accumulated PD3-4 in the medium corresponding to low Eh (3-4 was released under anaerobic condition. Estuary P. australis community has function for supplying PD3-4 to river water.