SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Fujikoshi, Y. and Satoh, K. (1997) Modified AIC and Cp in Multivariate Linear Regression. Biometrika, 84, 707-716.
http://dx.doi.org/10.1093/biomet/84.3.707

has been cited by the following article:

  • TITLE: Marginal Conceptual Predictive Statistic for Mixed Model Selection

    AUTHORS: Cheng Wenren, Junfeng Shang, Juming Pan

    KEYWORDS: Mixed Model Selection, Marginal Cp, Improved Marginal Cp, Marginal Gauss Discrepancy, Linear Mixed Model

    JOURNAL NAME: Open Journal of Statistics, Vol.6 No.2, April 26, 2016

    ABSTRACT: We focus on the development of model selection criteria in linear mixed models. In particular, we propose the model selection criteria following the Mallows’ Conceptual Predictive Statistic (Cp) [1] [2] in linear mixed models. When correlation exists between the observations in data, the normal Gauss discrepancy in univariate case is not appropriate to measure the distance between the true model and a candidate model. Instead, we define a marginal Gauss discrepancy which takes the correlation into account in the mixed models. The model selection criterion, marginal Cp, called MCp, serves as an asymptotically unbiased estimator of the expected marginal Gauss discrepancy. An improvement of MCp, called IMCp, is then derived and proved to be a more accurate estimator of the expected marginal Gauss discrepancy than MCp. The performance of the proposed criteria is investigated in a simulation study. The simulation results show that in small samples, the proposed criteria outperform the Akaike Information Criteria (AIC) [3] [4] and Bayesian Information Criterion (BIC) [5] in selecting the correct model; in large samples, their performance is competitive. Further, the proposed criteria perform significantly better for highly correlated response data than for weakly correlated data.