SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Einstein, A. and Born, M. (1971) The Born-Einstein Letters. Walker and Company, New York.

has been cited by the following article:

  • TITLE: Study on the Physical Basis of Wave-Particle Duality: Modelling the Vacuum as a Continuous Mechanical Medium

    AUTHORS: Donald C. Chang, Yi-Kuen Lee

    KEYWORDS: Vacuum, Wave-Particle Duality, Matter Wave, Elementary Particle, Vacuum Medium

    JOURNAL NAME: Journal of Modern Physics, Vol.6 No.8, July 16, 2015

    ABSTRACT: One great surprise discovered in modern physics is that all elementary particles exhibit the property of wave-particle duality. We investigated this problem recently and found a simple way to explain this puzzle. We proposed that all particles, including massless particles such as photon and massive particles such as electron, can be treated as excitation waves in the vacuum, which behaves like a physical medium. Using such a model, the phenomenon of wave-particle duality can be explained naturally. The key question now is to find out what kind of physical properties this vacuum medium may have. In this paper, we investigate if the vacuum can be modeled as an elastic solid or a dielectric medium as envisioned in the Maxwell theory of electricity and magnetism. We show that a similar form of wave equation can be derived in three cases: (1) By modelling the vacuum medium as an elastic solid; (2) By constructing a simple Lagrangian density that is a 3-D extension of a stretched string or a vibrating membrane; (3) By assuming that the vacuum is a dielectric medium, from which the wave equation can be derived directly from Maxwell’s equations. Similarity between results of these three systems suggests that the vacuum can be modelled as a mechanical continuum, and the excitation wave in the vacuum behaves like some of the excitation waves in a physical medium.