SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Degani, O., Gepstein, S. and Dosoretz, C.G. (2002) Potential Use of Cutinase in Enzymatic Scouring of Cotton Fiber Cuticle. Applied Biochemistry and Biotechnology, 102, 277-289.
http://dx.doi.org/10.1385/ABAB:102-103:1-6:277

has been cited by the following article:

  • TITLE: Temperature and pH Dependent Deactivation of Cutinases from Thermobifida fusca : A Comparative Study of Homologous Enzymes

    AUTHORS: Krishnamoorthy Hegde, Venkata Dasu Veeranki

    KEYWORDS: Cutinase, Thermal Deactivation, Thermostability, Thermodynamics

    JOURNAL NAME: Modern Research in Catalysis, Vol.3 No.4, September 22, 2014

    ABSTRACT: Thermostability of two homologous cutinases, Cut1 and Cut2 from Thermobifida fusca NRRL B-8184 was inves-tigated at combination of different pH and temperature in the range of pH 6 - 9 and temperature 45℃ - 80℃, re-spectively. The deactivation rate constants, the half-life and thermodynamic parameters, viz., △H*, △S*, △G* and activation energy kinetics of inactivation of the cutinases were assessed at different combinations of pH and temperature and compared. The optimal pH and temperature for the least degree of deactivation for Cut1 and Cut2 were found to be 8℃ and 45℃, respectively. The deactivation process was found to be faster at pH 6 and 9, with minimum deactivation at pH 8 for both the cutinases. It was found that △S* values are negative for both the enzymes and △H* value of Cut2 was 1.5 fold higher than that of Cut1 in the range of pH studied. Cut2 was found to be thermodynamically more stable with 1.7 fold higher deactivation energy at pH 6 and 7 and 1.4 fold higher deactivation energy at pH 8 and 9 in comparison to Cut1.