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Abstract 

In recent decades, brain science has been enriched from both empirical and 
computational approaches. Interesting emerging neural features include 
power-law distribution, chaotic behavior, self-organized criticality, variance 
approach, neuronal avalanches, difference-based and sparse coding, opti-
mized information transfer, maximized dynamic range for information 
processing, and reproducibility of evoked spatio-temporal motifs in sponta-
neous activities, and so on. These intriguing findings can be largely catego-
rized into two classes: complexity and regularity. This article would like to 
highlight that the above-mentioned properties although look diverse and un-
related, but actually may be rooted in a common foundation—excitatory and 
inhibitory balance (EIB) and ongoing activities (OA). To be clear, description 
and observation of neural features are phenomena or epiphenomena, while 
EIB-OA is the underlying mechanism. The EIB is maintained in a dynamic 
manner and may possess regional specificity, and importantly, EIB is orga-
nized along the boundary of phase transition which has been called criticality, 
bifurcation or edge of chaos. OA is composed of spontaneous organized ac-
tivity, physiological noise, non-physiological noise and the interacting effect 
between OA and evoked activities. Based on EIB-OA, the brain may accom-
modate the property of chaos and regularity. We propose “virtual brain 
space” to bridge brain dynamics and mental space, and “code driving com-
plexity hypothesis” to integrate regularity and complexity. The functional 
implication of oscillation and energy consumption of the brain are discussed. 
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1. Introduction 

Brain function is realized by the computation, transformation, and propagation 
of neuronal activity via neural circuit. Although the underlying operating me-
chanism is still not clear, it is believed that the brain must organize itself ac-
cording to some fundamental principles. In this article, we focus on recent neu-
robiological advance and integrate various perspectives into a summarized 
framework, that is, an intricate balance of excitation and inhibition (EIB), and 
on the EIB background occurs the evoked and ongoing activities (EA, OA). OA 
refers to the brain activities in resting state, while EA indicates brain response to 
external/internal stimuli. There are plenty of pathways and feedbacks to main-
tain EIB which is speculated to be situated near the boundary of meta-stability 
(bifurcation in parameter space), also named criticality or edge of chaos (ad-
dressing the transition between disorder and order), so that the system may en-
code diverse information, enable versatile neural dynamics, and may transit 
smoothly between different possibilities (multi-stable regimes) that are corres-
pondent with various mental states and psychological functions [1] [2] [3]. OA 
and EA may reflect themselves in neuronal spikes and neural oscillation. In ad-
dition to spontaneous activities relevant to information transfer and processing, 
OA comprises other components such as physiological and non-physiological 
noise, and the interaction effect with EA. It is remarkable that OA is composed 
of both chaotic/complexity and regular portions. The properties of chaos and 
regularity of EIB-OA not only present at neuronal level but also at large-scale 
network. EIB-OA is shaped by maturation and may adapt to living environment. 
This article does not strictly differentiate chaos and complexity, the former 
adopting chaotic theory to describe neuronal/neural features and the latter em-
phasizing the global/emergent behavior as a result from large number of inte-
racting components from lower hierarchy. 

There are many interesting discoveries of neural characteristics in recent dec-
ades; to name a few, self-similarity, long range correlation, attractor, criticality, 
power-law distribution, meta-stable equilibrium, multi-stable states, optimized 
information transfer, maximized dynamic range of information processing, dif-
ference-based and sparse coding, neuronal avalanches, and reproducibility of 
evoked spatio-temporal motifs in spontaneous activities. The enrichment of all 
the observation is inspired by empirical as well as theoretical neuroscience. It is 
crucial to realize that these findings are phenomena or even epiphenomena, not 
the underlying mechanism(s). This theoretical article attempts to formulate that 
the diverse and dazzling neural features actually can be attributed to this com-
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mon ground of EIB-OA. At first glance, balance of excitation and inhibition is 
nothing particular. However, the implication of the balance and OA is profound. 
EIB or equilibrium is not a dead steadiness but an active process. 

This article is divided into 8 sections. The first section describes the neurobi-
ological foundation that maintains EIB and the possible sources of OA. The en-
suing Sections 2 to 3 discuss the concepts of self-organized criticality and 
chaos/complexity and point out the causal contribution from EIB-OA. Sections 
4 to 6 mainly focus on the perspective of information processing in neural sys-
tem and its relevance to EIB-OA. Section 7 highlights two basic coding strategies 
substantiated by EIB, namely sparse coding and difference-based coding. The 
content in Sections 4 to 7 is associated with (not exclusively) the regularity as-
pect of the brain. The last section concludes the major points. 

In addition to experimental approach, computational simulation may com-
plement our understanding of brain principles. It is particularly pertinent when 
the theoretical models are constructed based on physiological constraints so that 
the rationality is endorsed by empirical evidence and in turn, the derived neural 
model may provide prediction, unveil more detail, help forming hypotheses, and 
guide future experiments. The relationship between experimental and theoretical 
perspectives of neuroscience thus can be regarded as mutually informative, and 
these two disciplines are equally appreciated in this theoretical article. The lite-
rature selection flow in this synthesis article is summarized in Figure 1. 

2. The Mechanism of Neural Equilibrium and  
Ongoing Activity (EIB-OA) 

2.1. Neural Activity and Noise 

As long as there is life, the brain is always active, no matter in sleep or even in 
comatose state [4]. The appearance of brain activities seems complicated, no 
matter at whatever scales. There are many ways to indicate neuronal/neural ac-
tivities, such as neuron membrane potential and conductance, open and close of 
ion channels, ion flow into and out of cells, cascade of biochemical reaction, cor-
tico-electric potential and electricity flow, oxygen consumption, glucose meta-
bolism, blood flow, etc. The methods of electrophysiology and optical imaging 
(e.g., calcium imaging) are frequently adopted to quantify neuronal activity. 
Within a volume of brain tissue, the electrical current flowing along dendrosomatic  

 

 
Figure 1. Literature selection flowchart and conceptual framework. 
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axis of pyramidal neurons constitutes local field potential (LFP, within 0.25 to 
0.5 mm in radius around the recording tip). At large scale, the manifestation of 
population neural activity also depends on the applied imaging modalities; to 
name a few: electrical oscillation and event-related potential (ERP) in electroen-
cephalography (EEG), blood-oxygen-level-dependent signal (BOLD) in func-
tional magnetic resonance imaging (fMRI), flow and metabolism indicated by 
radioactivity in positron emission tomography (PET) and in single-photon 
emission computed tomography (SPECT), and oximetry in near-infrared spec-
troscopy and so on. Each research method possesses advantage and limitation 
and is equipped with innate noise structure to take care of. 

At the level of neuronal tissue, intermittent spikes may occur spontaneously 
without external stimuli, and both chaotic and regular components have been 
identified. The spontaneous activity of neuronal tissue in vivo is apparently sto-
chastic with high values in Fano factor and in coefficient of variation of inter- 
spike intervals, but may actually contain reproducible spatio-temporal motifs [5] 
[6] [7]. At the level of neural population in resting state where quasi-irregular 
automatic activity dominates, EEG contains oscillation with specific spectral 
peaks (delta, theta, alpha, beta and gamma) and fMRI comprises low frequency 
fluctuation (<0.1 Hz) which is organized into modular structures [8] [9] [10] 
[11], evidence from large-scale network also indicating that the brain dynamics 
hosts both irregularity and regularity. There are several hypotheses for the neur-
al oscillation. Endogenous pacemakers in thalamus or cortex may generate elec-
trical rhythms (multi-generators) [12] [13], which may propagate to the re-
mainder of the cortex. Interacting neural nodes of the cortex and thalamus may 
either receive white noise as input and produce brain waves, or generate 
rhythms out of non-linearly coupled dynamics [14] [15] [16] [17] [18]. The 
network organized by fast recurrent excitation followed by slower feedback inhi-
bition seems particularly ready to give rise to oscillations [19]. The above origins 
are neither exclusive to each other nor an exhaustive account for the observed 
rhythmic neural activities. However, there remains a critical question, that is: 
how to reconcile the prominent neuronal stochasticity and the observed popula-
tion rhythmicity? 

Although it is possible that some neurons or coupled neurons may fire regu-
larly like a clock, cortical synaptic firing, as stated above, generally looks sto-
chastic. Brunel and Wang have made an insightful contribution to this issue that 
the frequency of neural network oscillation is determined by the synaptic and 
membrane properties, independent of neuronal firing rate [20], illustrated in 
Figure 2. Cortical oscillation may originate from collective irregularity from 
fine-scale neuronal firing, and the large-scale rhythm may reflect neuronal and 
synaptic characteristics. The emergent order/pattern out of stochastic constitu-
ents is a hallmark of complexity system. Conversely, global network activity may 
influence the functional coupling between the embedded neurons, and back-
ground activity may control signal transmission [21]. The across-scale relationship  
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Figure 2. Illustration of the relationship between neuronal spikes and local field potential. Upper: neuronal spikes 
of 40 neurons/channels (ordinate) of arbitrary temporal unit (abscissa). Lower: the fluctuation of local field poten-
tial of neuronal population. Note that the spiking rate is lower than the population oscillatory rhythm. 

 
is also noticed in cortico-electrical spectrum. 

Conventional neuroimaging research has centered on “regularity” aspect of 
brain-behavior relationship, such as peak wave of N100 and P300. For the re-
search adopting chaos approach (more detail in Section 3), phase plot of 
EEG/LFP shows consistent spatio-temporal patterns [22] [23]. EEG can be de-
composed into 1/f pink noise (fractal component, will be introduced in Section 
3) and spectrum peaks (harmonic component). Chaos does not mean something 
messy or random, and in fact, there is organized structure embedded in it. Chaos 
and randomness (pure noise) can be differentiated by mathematical metrics, 
such as finite correlation dimension for the former which is not convergent for 
the latter. When the “regular” part of EEG is appraised closely, it appears far 
away from perfectly periodic. The analysis of correlation dimension and Lyapu-
nov exponent, two common indices of chaos, demonstrated that alpha oscilla-
tion, one of the most prominent EEG constituents, is chaotic to certain degree 
[24]. From the evidence summarized above, either at neuronal or neural levels, 
the distinction of regularity and chaos in the brain dynamics seems somewhat 
artificial and contingent upon different vantage points. They nevertheless may 
root in the same underlying neuro-architecture and neural computation. Then, 
how do the chaotic and regular components interact? This issue is still under 
investigation and several possible mechanisms are proposed. For example, in the 
asynchronous neuronal dynamics, there may exist occasional weak inter-areal 
coherence/correlation (a class of regularity) in either resting state or in response 
to mental activity and external stimuli. Albeit its mildness, the regularity may 
profoundly affect network behavior by shaping the connectivity structure, for 
example via spike-time-dependent plasticity (STDP; a synaptic learning process 
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that depends on the temporal correlation of neuronal firing sequences within 
limited time window). The network firing pattern could thus be altered, and a 
recurrent network endowed with STDP at local synapses could self-organize into 
chaotic manifestation [25]. Another class of regularity that may interact with 
chaotic property of the brain is neuronal/neural code (Section 7). 

OA and EA used to be treated as different brain activities, dependent upon 
whether the organism exposes to external stimuli or not. Previous research adds 
“resting” before the imaging modality to describe OA, e.g., resting fMRI or 
sometimes resting EEG. It is arguable that the brain may not be idling in the ab-
sence of direct sensory stimulation and of behavioral output since OA may still 
contain evoked components from mind wandering, emotion intrusion, auto-
matic memory retrieval, and command to or feedback from visceral organs. The 
distinction of OA and EA is accordingly not absolute. This theoretical article 
tentatively assumes that OA comprises four components: spontaneous organized 
activity, physiological noise, non-physiological noise, and interaction effect with 
internal/external stimuli. “Spontaneous organized activity” refers to repeated 
spatio-temporal structures, either regular or chaotic, which generally (but not 
always) have higher power/amplitude, i.e., spikes, action potential or oscillation. 
It will become clear later (Section 6) that part of spontaneous organized activity 
of OA is actually a replica of EA (e.g., neuronal/neural codes), and their rela-
tionship is far more intimate than previously thought [26] [27] [28]. Physiologi-
cal noise indicates stochastic activities which may facilitate signal transmission 
via several mechanisms, e.g., stochastic resonance and stochastic synchrony [29], 
whereas the non-physiological counterpart follows traditional sense of noise that 
has detrimental impact on information transfer and processing. Conceptually, 
sporadic spikes which do not contribute to psycho-physiological function should 
be regarded as non-physiological noise. Although neuron is a threshold machine 
obeying all-or-none law, it should not be confused that noise may still occur 
when there is no action potential. Noise, no matter physiological or not, indeed 
may change the conductance, capacitance, and membrane potential of a neuron 
without firing it, i.e., affecting the hidden state of neurons, which is different 
from the noise of electronic devices where circuit parameters are relatively sta-
ble. Subthreshold noise may result from many sources, such as thermodynamic 
noise in early sensory stage, biochemical noise of cellular machinery, and back-
ground activity caused by pre-synaptic bombardment without reaching firing 
threshold. Through the modulation of phase and resonance of neurons, the in-
fluence of noise will be carried over during signal transmission. Subthreshold 
noise may benefit signal transfer, thus probably physiological. The rationale 
supports the distinction of physiological and non-physiological noise will be 
discussed in more detail in Section 5 (Function and characteristics of OA). 

Theoretical research has suggested that random noise may drive an interact-
ing network to generate synchronous oscillation. It is notable that the oscillatory 
behaviors of the network are prone to occur at certain “critical” point (or zone) 
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where the dynamics tends to manifest as chaotic. Criticality is a special state of 
EIB (in this article) where the characteristics of network change drastically, akin 
to the boundary of phase transition in physics, for example the state of 
co-existence of water and ice. For a network at criticality, the transmission and 
dynamic range of information are optimized and maximized (Section 4). 
Through synaptic plasticity, the brain dynamics may shift along the critical 
boundary to be more chaotic or less chaotic. Together, noise and spontaneous 
neural activity, and chaos and regularity (information transmission), can be 
bridged by EIB at critical state. The reproducible spatio-temporal pattern of 
spontaneous organized activity of OA is endorsed by structured EIB, which may 
carry out information storage/retrieval, representation of neuronal/neural codes, 
and provision of immediate access of sensorimotor repertoire. These above is-
sues will be elaborated in later sections. Across different hierarchies and scales, 
every system has its own noise which may come from the system itself or from 
the observer’s measurement, and most frequently from both. The measurement 
noise is not interested in this theoretical article and it can be categorized into the 
non-physiological noise of OA. We will see that signal variability that used to be 
attributed to noise may be physiologically meaningful and is conceptually rele-
vant to entropy (Section 6). 

2.2. Excitatory and Inhibitory Equilibrium 

Brain statistics show that 1 mm3 of mouse cortex contains 105 neurons, 108 syn-
apses, and 4 km of axon [30]. It was found that the white matter volume scales 
approximately as 4/3 power of the gray matter volume across fifty-nine mamma-
lian species, indicating that there must be wiring principles that mammalian 
brains conform to [31]. Intense local computation is endorsed by the high den-
sity of axons and dendrites which constitute around 60 percent of gray matter 
[32]. The fact that local connections are denser than distant ones may contribute 
to the property of small worldness. On average each individual neuron can inte-
grate the information from thousands of other neurons [33] [34], and send its 
activity back to the network. Based on the underlying hardwire, excitatory and 
inhibitory mechanisms work hand by hand to construct neural codes and, to 
process and transfer neural information. The two cardinal forces keep dynamic 
balance all the time either in resting or in evoked states [35]-[41], similar to the 
core concept of Yin-Yang theory in oriental philosophy frequently symbolized as 
Taiji, see Figure 5 [42]. Yin and Yang respectively denote negative and positive 
drives, they not only opposing but also complementing each other. The “oppos-
ing” side results in quench and saving energy, whereas the “complementing” 
side leads to genesis. 

It has been summarized that the wiring of neural bundles can be largely cate-
gorized into two subsystems, namely informational and modulatory, with the 
latter adjusting the characteristics of the former [43]. Informational pathway is 
organized among the rapid-conducting (50 m/sec), well myelinated, large neu-
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rons in hierarchical or heterarchical manner, where neural excitation is mainly 
mediated by glutamate, and neural inhibition by two fast neurotransmitters, gly-
cine and gamma-aminobutyric acid (GABA). In contrast, modulatory pathway is 
distributed diffusely by poorly myelinated neurons with thin axons and slow ve-
locity (0.5 m/sec). Unlike informational subsystem using amino acids to gate ion 
channels (also voltage-gated), neurotransmitters of modulatory subsystem act on 
G-receptors via monoamines (e.g., norepinephrine, acetylcholine, dopamine, 
serotonin) or peptides (e.g., substance P, endorphins). From the tissue organiza-
tion perspective, neuro-inhibition is mainly executed by inhibitory interneurons. 
In addition, neuronal suppression may also work through post-synaptic hyper-
polarization, synaptic depression, spike frequency adaptation, elevation of spik-
ing threshold, changes in membrane conductance, and negative auto-feedback 
(e.g., via auto-receptor). Referring to the theory of Yin-Yang, the counteraction 
between excitation and inhibition in informational network is evident but what 
is the “genesis” aspect at EIB? We believe that it is the rich brain dynamics 
emerging around the banks of EIB boundary. The versatile brain dynamics shall 
get dampened toward monotonic patterns in over-excitation condition, such as 
epilepsy, or in over-inhibition condition, such as deep anesthesia induced by 
GABA agonists. 

Around 75 percent neocortical neurons are excitatory pyramidal neurons, 
while inhibitory interneurons comprise the rest one fourth. There must be or-
ganization and/or mechanism to compensate the relatively smaller number of 
interneurons to achieve delicate balance. For example, the firing rates and syn-
aptic strength of inhibitory interneurons are higher than those in excitatory 
neurons, and the depression of inhibitory synapses due to sustained activation is 
less significant [44]. Neural network can thus be modeled as an array of recur-
rently connected excitatory neurons plus a common inhibitory neuron [45]. 
Distant excitatory input may activate local excitatory and then inhibitory neural 
populations to reach EIB. EIB is reached in both spatial and temporal domains. 
The origin of short-term depression/adaptation can be either local (e.g., synaptic 
depression, spike frequency adaptation) or distant through thalamo-cortical 
pathway [46]. Recent evidence highlights that the neuronal excitation and inhi-
bition may cover the same receptive fields, such as in acoustic tonal and visual 
orientation tuning [41] [47]. Examination of cellular conductance revealed that 
the distribution of inhibitory mechanism may possess the same preferred prop-
erty (e.g., orientation) and tuning width as the excitation counterpart. Further-
more, organized in correspondence with the visual receptive fields, inhibitory 
interneurons may contribute to the distinguishing push-pull phenomenon of 
striate cortical simple cells where simultaneous excitation and inhibition can be 
elicited in isolation within discrete subregions [48] [49]. The above evidence 
suggests that spatial organizations of EIB are tissue-specific which in turn may 
lay the foundation of pertinent physiological functions. 

As to temporal domain, the mechanism of EIB may also present tissue speci-
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ficity. For example, EIB of simple cells sensitive to orientation in visual cortex 
operates in chorus, whereas EIB of neurons in primary auditory cortex has a 
short temporal lag [41] [49]. The temporal relationship between excitatory input 
and balanced inhibition is precise in auditory cortex, with the latter suppressing 
the former within around 4 msec during which spikes occur. The consequence 
of lag on neuronal dynamics is not trivial. Wehr and Zador performed computa-
tional simulation using integrate-and-fire model to explore the effects of contin-
uing and delayed balanced inhibition [41]. The EIB with no delay (on average) 
and with brief delay respectively generated irregular firing and highly transient 
spiking, fitting with the observation in visual and auditory cortices. Since closely 
located neurons receive similar inputs, to investigate the dynamics of EIB, Okun 
and Lampl recorded 47 pairs of nearby neurons in the barrel cortices of lightly 
anesthetized rats and used dual recording technique to disentangle excitation 
and inhibition. The authors concluded highly synchronized excitatory and inhi-
bitory inputs to a single neuron in both spontaneous and sensory-evoked (mul-
ti-whisker deflections) conditions, and they found that the inhibitory inputs 
lagged the excitatory counterparts for several milliseconds [40]. Mild delay of 
neural inhibition was also noticed by an earlier report in the prefrontal cortex 
[39], where excitatory conductance augmented with increasing neural activities, 
and the inhibitory conductance followed in a proportional way. Accordingly, 
EIB is spatially and temporally balanced (may have millisecond lag), maintained 
via various pathways, specifically organized for different brain regions, and is 
reached since the very first processing unit—neuron. The mechanism of EIB 
may avoid noise accumulation in the central nervous system [50], control the 
gain of excitation [37], and prevent the unnecessary firing because of saturation. 
At large scale network, excitatory and inhibitory balance can be achieved 
through bundled hard-wiring, for example, DeLong and Wichmann loop of bas-
al ganglia, mutual suppression between neocortical and limbic compartments, 
excitatory-inhibitory interaction between ventromedial prefrontal cortex and 
raphe nuclei [51] [52]. The consequence of loss of EIB at large scale network can 
be serious. Imbalance in cortico-limbic interaction may underlie the characteris-
tic pathology of major depressive disorder, i.e., hypofrontality and limbic hyper-
activity [52], see Figure 3. 

EIB is not static steadiness and importantly, may be organized and structured 
adaptively at criticality to allow several signature dynamic features to emerge, 
such as oscillation and chaos, which may facilitate information processing [53] 
[54] [55] [56] [57]. The design of EIB guarantees that mild disruption of the 
equilibrium by either excitatory or inhibitory input would impose non-trivial in-
fluence on the neuron, allowing tracking changes and laying foundation for dif-
ference-based coding (Section 7). The perturbation may not be enough to fire a 
neuron but will substantially affect the membrane background activity and 
hence the timing of firing, which is one of the sources for irregularity and/or 
chaos to occur in vivo [38] [56]. An inspiring numerical research by van Vreeswijk  
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Figure 3. Highlight of a network interacting pattern related to MDD, reciprocal suppres-
sion between dorsal and ventral compartments. Blue-inhibition, red-excitation. Left: 
short red arrows indicate various excitatory inputs to dorsal and ventral compartments of 
the brain. Blue arrows show mutual suppression as an interacting mechanism between 
the two compartments. Right: in homeostasis, balance is reached and their sizes (an ab-
stract representative of metabolic level or engaged state) are approximately equal, with 
mild perturbation allowed. When reaching breaking point and the balance is broken as in 
MDD, the size of ventral compartment enlarges so does its negative influence on dorsal 
compartment, and conversely, the size of dorsal compartment shrinks and its impact on 
ventral limbic system reduces. The altogether consequence evolves to a state/attractor of 
hypofrontality and limbic hyperactivity. 

 
and Sompolinsky revealed that with EIB constraint, the property of chaos 
showed up in network dynamics which persisted even under constant external 
input [56] [57]. Further, the network activities demonstrated linear relationship 
with the intensity of external stimuli, implying that a nonlinear EIB system (non-
linear for each unit/neuron) may engender linear response (linear for population) 
to external perturbation that has been reported by quite several neuroimaging li-
terature [58]. Although traditional research used to adopt recurrent excitato-
ry-excitatory interaction to explain neuronal oscillation, recent advance has con-
firmed the fundamental role of inhibitory mechanism in rhythmogenesis [19]. 

3. Criticality and EIB-OA 

In physics, criticality generally refers to a state of equilibrium with potential of 
phase transition, like the coexistence of ice and water. In power plant, criticality 
is a balanced state in which producing and losing of neutrons are equivalent so 
that fission chain reaction of uranium is maintained and under control. The 
above two examples hint a research focus of great interest common to many dis-
ciplines, i.e., the equilibrium boundary of several possible states. The concept of 
phase transition can be re-formatted in network manifestation as the dynamics 
between total randomness and boring order (edge of chaos) or the dynamics 
with several concurrent meta-stable states, which is usually accompanied with 
drastic change and complicated diversity to perturbation. The denotations of 
equilibrium and stability in this article are different because EIB could be mini-
mally or weakly stable to allow various possible trajectories to travel around. 

3.1. Criticality and OA 

It is important to note that at criticality oscillation may occur naturally. Ghosh et 
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al. constructed a set of network formula by combining a realistic model of axon-
al membrane and pulse transmission [59] [60], topology of coupled neural nodes 
based on a connectivity map (CoCoMac) [61], nerve conduction delay, and phy-
siological noise to study resting state dynamics of the brain [3]. At the neigh-
borhood around critical boundary separating stable and unstable regions in pa-
rameter space, the authors found the emergence of coherent spontaneous fluc-
tuations from the simulated neuro-electric activities. By contrast, all oscillations 
were either strongly damped or displayed high amplitude stereotyped spikes 
(resembling epileptic spikes) when the parameters were farther away from the 
critical boundary. Ghosh et al.’s stability analysis elegantly illustrated the power 
of theoretical simulation that may unveil hidden principle of brain dynamics. 
Similarly, Deco et al. combined Wilson-Cowan model, connection map of Co-
CoMac with 38 regions, conduction delay, and Gaussian noise to investigate the 
neural network behaviors [1] [62]. The authors selected working points at Hopf 
bifurcation where the system was close to losing stability and again synchronized 
oscillation fit with physiological characteristics started to occur. At criticality, 
the similarity between connectivity pattern of simulation results and that of em-
pirical resting fMRI was confirmed by another study using different neural 
models and coupling constraints [2]. 

3.2. Self-Organized Criticality (SOC), EIB and Neuronal Avalanches 

For non-linear dynamic systems, SOC is used to describe a property that the 
critical point is also an attractor where the dynamics prefer to travel. SOC was 
first proposed by Bak, Tang and Wiesenfeld, thus also named BTW model [63]. 
The authors used pendulum array as a thinking experiment to highlight how a 
minimally stable system would evolve. They constructed cellular automata ob-
eying simple rules to illustrate that, although still debated, SOC was a good can-
didate to explain 1/f noise frequently encountered in nature. Nowadays, it is 
generally agreed that SOC has close relationship with cardinal characteristics of 
chaos (the relevance to neuroscience will be discussed in Section 3), such as 
fractals, scale-invariance, 1/f noise, and power law distribution. The concept of 
SOC has been extended to many other fields, such as earthquakes, economics, 
epidemics, forest fires, solar physics, super-conduction, ecology, sociology, and 
neuroscience. In contrast to traditional criticality that demands finely tuned de-
tails, a welcome trait of SOC regarding its application to neurobiology is that the 
parameters of the model can be changed widely without affecting the emergence 
of complexity behaviors. This property of SOC implicates that continuously va-
ried biological underpinnings may engender relatively consistent neuro-electric 
features, and hence mental life. 

To explain SOC, a metaphorical “sand-pile” is commonly adopted to demon-
strate the critical and unstable condition: sprinkle sand grains on a growing pile, 
and through the repeated collapsing processes the sand pile system may ulti-
mately reach certain “equilibrium state” where next extra grain sprinkled onto it 
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could cause landslide or “avalanche”. Initial empirical research on SOC accor-
dingly inclined to investigate real granular matter, and SOC system is conceived 
to have accumulating as well as dissipating forces that make the system “ba-
lanced” near critical point. Beggs and Plens are among the pioneers to postulate 
the existence of SOC in neural tissue, dubbed neuronal avalanches [64]. In their 
classical work, organotypic slices of rat somatosensory cortex were prepared and 
LFP was recorded. A neuronal avalanche was defined as the spatial pattern of 
sharp LFP peaks that was preceded and ended by blank frames, i.e., no activities 
for at least one time bin. The “spatial pattern” in neuronal avalanche described 
the synchronized propagation of potential volleys, especially at short time scale 
less than 100 msec. It is obvious that information transmission is embedded in 
the avalanches. They calculated branching parameter as the average number of 
neural events of descendent from one ancestor. The empirical value of branching 
parameter was one, exactly implying EIB. If the neural mechanisms of excitation 
and inhibition were imbalanced, the branching parameter would be greater or 
less than one, respectively incrementing or decreasing neural activities after a 
period. System observables distributed by power law is a hallmark indicator of 
chaos. In the EIB background, the authors observed power law with an exponent 
of -3/2 for event size and -2 for lifespan distribution of neuronal avalanches. 
SOC was also proposed to explain long-range correlation and power-law beha-
viors of EEG and MEG recordings [65] [66]. 

The phenomenon of neuronal avalanches has been extended empirically and 
analyzed theoretically. Priesemann et al. examined SOC in different vigilance 
states using intracranial depth recording (in vivo) and modeled by inte-
grate-and-fire SOC model [67]. They used “area under deflection” as the prima-
ry quantity to define neuronal avalanches and discovered that the brain dynam-
ics did conform to power law, no matter in wakefulness, rapid-eye-movement 
sleep, or slow-wave sleep, although mild deviations existed. Theoretical simula-
tion of spiking neural network and dynamic synapses successfully replicated 
SOC behaviors that were robust to parameter changes [68] [69]. Conventional 
SOC research did not consider the hard-wire infrastructure of the brain. Com-
putational simulation by Rubinov et al. introduced hierarchical modular con-
nectivity into the neural network of spiking neurons (leaky integrate-and-fire 
neuronal model) [70] [71]. The neuronal model was more realistic given that 
leakage conduction, synaptic currents, external currents, change in membrane 
potential and synaptic weights, non-linear threshold property and STDP (Heb-
bian rule) were all considered. In addition to power-law distributions of size and 
duration of neuronal avalanches, the authors noticed patterns of modular spikes 
(coherence within modules), distant synchronization (coherence between mod-
ules), contribution of modularized inhibitory neurons to SOC, “phase transi-
tion” of dynamics shaped by synaptic plasticity, and the significance of hierar-
chical modularity to the occurrence of broad critical regime (robustness to 
change of parameters). Their work provided clues to the consequences of 
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self-similarity at both structural and dynamic level. The properties of neuronal 
avalanches and power-law distribution have been proposed to occur in balanced 
network where the net difference between excitation and inhibition is small 
compared to the magnitude of excitation and inhibition—EIB [72]. 

It is imperative to note that power-law is close to self-similarity across differ-
ent scales, thus is an indicator of chaos (or sometimes complexity). Criticality is 
frequently associated with chaotic features, whereas conversely, power law 
(chaos) is not sufficient to imply criticality [73]. Branching parameter also does 
not guarantee criticality, instead it implies EIB when equal to one. We believe 
that the concept of SOC is insightful and could be one of the main manifesta-
tions rooted in neural equilibrium. 

4. Complexity/Chaos and EIB-OA 

Linear system with finite dimension is never chaotic. The degrees of 
non-linearity of brain informatics are varied for different imaging modalities, for 
example higher in EEG and lower in fMRI. Although traditional neuroimaging 
research used to adopt linear approach to decipher neural responses, empirical 
evidence has unveiled properties of non-linearity, complexity, multi-stability, 
long-range temporal correlations, power-law scaling behaviors and so on [2] 
[22] [23] [27] [66] [74] [75]. Since inter-correlation and self-similarity, in oppo-
site to uncorrelated and diffusive process, have been observed in brain informat-
ics, the probability distributions of global quantities, such as power of particular 
frequency or duration of particular state, have non-Gaussian tails characterized 
by extremal events [74] [76]. 

Chaos is a mathematic discipline to explore dynamic systems that are modeled 
with (few) deterministic (differential) equations. The chaotic trajectory evolving 
with time may aggregate to show interesting topology, such as attractor; we 
resort to a double scroll as an illustration in Figure 4 [77]. It is evident that the 
spatio-temporal patterns of chaos could be correlated (even though not identic-
al), and it is possible to transit between different wings (states) [22] [23] [75].  

 

 
Figure 4. The trajectory of double scroll attractors. Two attractors are demonstrated. 
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Conventionally, chaos is defined as “aperiodic” and “bounded” dynamics in a 
“deterministic” system that is “sensitive to its initial condition” (butterfly effect), 
four terms in total (p.27 - p.28) [78]. The four criteria of chaotic system do de-
scribe some features of brain dynamics but not satisfactory. For example, brain 
dynamics may contain periodic portion in the spectrum domain. The criterion 
of “deterministic system” may be substantiated by the neural architecture, res-
ponsive mechanics, self-balancing (negative) feedback and self-reinforcing (pos-
itive) feedback and so on, extremely complicated indeed and modifiable online 
via synaptic plasticity. Besides, it is generally believed that brain possesses noise 
and stochastic process (e.g., Poisson-like spike train). There are many interesting 
features of chaos theory not covered by this theoretical article, including period 
doubling, Cantor set, Poincaré map, strange attractor, and the relevance to en-
tropy and so on. However, the measurements spanning from neuronal, neural to 
psychological and behavioral domains do show certain features of chaos al-
though not completely obey it. 

It is obvious that “chaos” does not imply that the brain works in a random or 
crazy way. The idea of attractor can be extended to an attractor neural network, 
where the spontaneous dynamics may settle into one of several possible firing 
patterns, which then may eventually destabilize and shift to another pattern (at-
tractor) either automatically or under the effect of noise. The perturbation of an 
external stimulus may destabilize the network so that the dynamics may leave 
previous state and detour to the appropriate wing for the duration of the central 
effect of that stimulus. Fractal is often used to catch the geometry of chaos. 
Fractal objects permeates our world, even at first glance they may look irregular, 
such as landscapes, clouds, trees, rivers, lightning, branches of tracheal tubes, 
blood vessels and neuronal dendrites [79]. Some fractal objects are artificial, 
such as Koch snowflake, Sierpinski Triangle, Dragon curve, Pythagoras tree and 
Cantor set [80]. Self-similarity across various scales is an important source of 
scale-invariance and power-law distribution and may contribute to long-range 
dependence/correlation in spatial and temporal domains. Self-similarity and 
power-law can be viewed as identical in many systems; the former is the descrip-
tion, and the latter is the mathematical form. The equivalence between 
self-similarity, scale-invariance and power low is tenable but none of them 
promises criticality. 

Complexity theory is developed from chaos theory. Chaos is a mathematical 
fact, while the precise definition of complexity is yet to be delineated. Complexi-
ty system contains many non-linearly interacting, interdependent elements. In 
addition, complexity system spans different level, each with specific structures 
and organization rules, with the system at each scale made up of the constituents 
of the finer scale. Complexity system usually involves the interplay between 
chaotic and non-chaotic components. One of the most fascinating phenomena 
of complexity system is its emergent collective behavior, which may be hard to 
predict from an understanding of its lower-level constituents. For example, with 
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increasing scale, neuro-activities may manifest as neuronal spikes/avalanches, 
LFP/oscillation of neural tissue, and EEG/BOLD fluctuation in brain areas. The 
emergent property is relevant to the concept of self-organization, which can be 
out of simple rules like differential equation and automaton. Another notable 
difference between fractal and complexity system lies in that fractal mathematics 
can be applied to describe the structure of static geometry, whereas complexity 
system must evolve with time. For living organisms, “complexity adaptive sys-
tem” was proposed to account for a complexity system that may alter themselves 
to adapt to a changing environment and conversely, may also change the envi-
ronment to suit them. In this article, the term chaos is used at mathematical 
stance, and the term complexity is applied to denote a holistic and realistic as-
pect of brain dynamics, which comprises the component of chaos/fractal but not 
limited to it. 

4.1. Virtual Brain Space and Mental Space 

Many charming ideas of chaos/complexity theory are picked up to neuroscience 
research. Complexity theory is welcome for a lot of reasons. The most intriguing 
one, we believe, is because complexity theory is a potential explanation, at least 
an adorable endeavor, to fill in the gap between anatomical space and mental 
space; we name it “virtual brain space”, explained below. Mapping brain func-
tion to anatomical location, dubbed functional localization or locationist ac-
count, has pushed forward substantial progress; however, it might be abused to 
become a form of reductionism. For example, take the enhanced neural activity 
in amygdala as equivalent to fear or that in striate cortex as vision. The potential 
fallacy to position psychological function at certain place in the brain has been 
challenged. For example, keeping time is the task of a clock but it is inconvinci-
ble to attribute that function to a particular gear [81]. Nevertheless, it seems ap-
propriate to assume that there must be correspondence between the brain (biol-
ogy) and psychology. 

Given that major categories of psychological functions have respective mate-
rialistic implementation in specific brain regions, the next question is: what is 
the brain feature corresponding to the ever-changing psychological content, in 
real time manner? A natural candidate, no doubt, is the brain dynamics. Dy-
namics indicates something happening in time stream, which is a common place 
shared by the brain and the mind of living organisms. A theory is desperately 
needed to describe the brain space with its characteristics instantly homologous 
to psychological content which occurs in mental space. When collapsing the 
temporal dimension, the correspondent structures between brain space and 
mental space should be conspicuous. From the perspective of complexity theory, 
the attractors, meta-stable states, and trajectories can be respectively projected to 
specific psychological entities/states, psychological possibilities, and the routes of 
conscious flow; these topics will be introduced later. Complexity/chaos enables 
the brain to be a hermeneutic device [82]. In this article, “psychological” points 
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to specific capability, while “mental” is a broader term, including the states when 
no specific psychological function is carried out. 

Is there empirical evidence mediating the relationship between brain and 
mental spaces? Empirical support may come from the results of multivariate 
analyses of functional brain imaging research. Take a general fMRI study adopt-
ing certain experimental design as an example: In contrast to conventional gen-
eral linear model (GLM) approach where coordinate with peak statistics (or 
central mass) is taken as a representative, multivariate approach addresses the 
activation pattern carrying pertinent information from clustered voxels of inter-
est (assume voxel number = N) [83]. Nowadays, there are two main analytic 
platforms (and a lot of variations) to decode patterned information in the brain, 
i.e., multivariate pattern analysis (MVPA) and representational similarity analy-
sis (RSA) [84] [85]. To relate to psychological contents, MVPA may combine 
machine learning procedure and classification scheme, whereas RSA may resort 
to dissimilarity matrices and clustering algorithm (not the focus of this theoreti-
cal article). Activation pattern is inherently multi-dimensional, and its topology 
enabling classification of experimental conditions/stimuli generally indicates two 
things: First, for each experimental condition or category of stimuli, there exists 
a spatially distributed response profile, neither random nor homogenous; 
second, their patterns are distinct. Different multivariate patterns of a cluster, 
say fusiform face area (dimension N), may carry the information to distinguish 
between different faces. The most primitive sub-space for facial recognition 
(embedded in virtual brain space with dimension M and M >> N) is to project 
the weights (i.e., beta values of the GLM results) into N-dimensional sub-space. 
Recover the spatially distributed pattern into the space with dimension N+1 (N 
voxels plus time) shall disclose that the trajectory of the cluster’s dynamics in-
deed eschews toward and lingers around the sub-space spanned by the N voxels 
with higher weights (or beta values) for facial recognition. Activated clus-
ters/blobs to distinct classes of experimental paradigms may imply differentially 
preferred sub-spaces, and these sub-spaces may index the “location” correspon-
dent to the associated psychological function or state in the virtual brain space 
[86]. 

It is noteworthy that the raw neural/BOLD signals may not be the actual entity 
in the virtual brain space. The dynamics of N voxels may warrant certain un-
known function(s) to convert them to better the match with mental world. Ac-
cordingly, “functional localization” should not be restricted to the concrete ana-
tomical space made of neural tissues but instead, should be examined in the 
brain space where the characteristics of dynamics are conceptual and mul-
ti-dimensional—that is why we regard the space “virtual”. What MVPA and 
RSA decode is not only about pattern but perhaps more importantly, is the indi-
cated “psychological spot” in virtual brain space. Understanding the distinction 
between anatomical space and virtual brain space is a premise to appreciate why 
a theory capable of summarizing dynamics is so desirable. 
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At this point, it is proper to contrast our virtual brain space with the reflection 
of brain-mind issue from other discipline [87]. Psychology largely stems from 
studying the content in consciousness. Based on recent meta-analysis, some re-
searchers begin to consider “psychological primitives” that are not consciously 
accessible but may underlie psychological functions and may have better cor-
respondence with neural events. Here, we would like to distinguish that above 
conscious level, psychology has its neural correspondence in the virtual brain 
space, whereas below conscious level, neuronal/neural features are the candi-
dates for psychological primitives. Decades of endeavor to localize brain func-
tions in neuroscience is certainly successful in some sense but is destined to be 
insufficient since the validity to map “below-horizon” neural features to “above- 
horizon” psychology is questionable [87], see Figure 5 for explication. In the 
virtual brain space, psychological function or mental state may manifest as 

 

 
Figure 5. The correspondence between psychological primitives and neuronal/neural features, and that between 
psychological function and complexity topology in virtual brain space. The symbol Taiji is situated in the middle 
of the figure to indicate EIB-OA. Taiji is a core concept of oriental philosophy Taoism which emphasizes balance 
between and genesis from positive and negative forces/potentials. Solid bi-directional arrows and curved arrows 
respectively represent correspondence and unknown transformation. The horizontal gray bar distinguishes be-
tween above and below consciousness. 
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attractors and “meaning” may be stored in the dynamic orbit. 
Within a particular brain region and the correspondent sub-space in the vir-

tual brain space, say fusiform face area, slight deviation in the spatial distribu-
tion of neural activities may account for the capability to accommodate tre-
mendous within-category variability, e.g., recognize so many different faces. Si-
milarly, different odors may display different configurations of electrical fields in 
the olfactory system [22] [23]. It reminds that small differences in the initial 
condition (within category difference) would be amplified in chaotic system. The 
variation could be grasped by pattern-based multivariate analyses if the resolu-
tion of neuroimaging tool is high enough. The explanatory power of complexity 
theory has been applied in learning, memory, and motion detection and so on 
[88] [89]. Across several brain regions and hence the confluence of several 
sub-space of virtual brain space, complexity theory provides a natural platform 
to assess multi-modal integration, contextual effect, and to endorse a single 
brain region to participate in many different tasks [21] [22] [23] [75]. It is 
well-established that prolonged visual stimuli may only generate transient cor-
tical responses and are subject to adaptation [90]. It seems hard to explain the 
sustained visual awareness of background/environment that is out of the 
here-and-now focus/attention. Lingering in certain constructed attractors in 
virtual brain space may provide a feasible account to this stable background ex-
istence in our visual world. Studying the topology of neuropsychiatry conditions 
in virtual brain space shall be informative since it provides global dynamic pat-
tern that is more relevant to (abnormal) mental phenomenon. The fronto-limbic 
dysregulation of MDD, as shown in Figure 3, may manifest as inflated limbic 
and shrink frontal attractors in virtual brain space (after proper transformation), 
which is hard to capture by the measured regional neural features (locationist 
account). 

Although the transformation of brain dynamics to virtual brain space is theo-
retical for now, there are several constraints in the building up computational 
simulation that are worthy of consideration: 1) be sensitive to initial condition 
(can be triggered by tiny differences in sparse codes, i.e., code driving complexi-
ty; see Section 8); 2) may accommodate within class diversity by the topology of 
trajectories (attractors; like recognizing different faces or insects); 3) parameters 
can be fine-tuned by exposure to stimuli; and 4) in resting state the itineracy 
may repeat the patterns learnt before (replica of EA in OA, Section 6.3). 

4.2. Chaos across Different Scales and Modalities 

Power law is frequently used as a probe to suggest chaos or complexity system. 
Fractal behaviors exist in neuronal signaling, neural spiking train, and LFPs. it is 
tempted to examine whether the property transcends to networks at coarser 
scales. Freeman et al. constructed KIII model of olfactory system and discovered 
that among the parameter space where four different kinds of attractors are 
possible, i.e., fixed point, limit cycle, quasi-periodic and chaotic, only chaotic 
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solution reproduced the observed features of action potential and EEG in olfac-
tory bulb [91]. The well-known 1/f EEG spectrum is also an instance of pow-
er-law distribution. Kitzbichler et al. applied Hilbert transformation to resting 
brain signals (fMRI and MEG) and then calculated local and global synchroniza-
tion indices across different scales [92]. The authors discovered that both the 
distributions of inter-regional phase-locking intervals and global synchroniza-
tion index conformed to power law scaling, regardless of imaging modalities. 
Scale-invariance of functional connectivity was also observed in EEG, with the 
power law exponents of global synchronization differing between spectra, and 
the lower frequencies exhibiting steeper slope [93]. The probability distributions 
of EEG power of wide-range spectra and of the dwell time of different states 
were skewed to the right-hand tail that was also noticed in complex system [74] 
[76]. Although 1/f scaling is not applicable to neuro-electric activities of spectral 
peaks, the amplitude modulation of alpha oscillation and auto-correlation of al-
pha, mu, and beta frequencies still obeyed power law [66]. The abundance of 
self-similarity in central nervous system may underlie the observed scaling law 
in cognition, such as in perception, action, memory, and linguistics [94]. 

From the aspect of neuroanatomy, dendritic tree bears fractal structure [95] 
[96]. It was reported that hippocampal CA3 network exhibits scale-free topology 
in which the distribution of the output links per neuron decays as a power law 
[97]. Using a wide sense self-similarity as an indicator (retaining exponential 
functional form across different scales), fractal geometry was revealed in seg-
mented gray matter with dimension around 2.80 [98]. Accordingly, part of the 
emergent chaotic property of neuro-activities could originate from the underly-
ing neuro-architecture. The complexity features of the brain thus have various 
origins, so does the power-law distribution. From the above discussion, com-
plexity/chaos may originate from interacting network, criticality/SOC (Section 
2), EIB (Section 1.2, Section 3) and even from the fractal geometry of underlying 
neuro-anatomical architecture. 

4.3. EIB and Complexity/Chaos, and Criticality 

Exquisite theoretical research on neural models has shown that networks with 
recurrent structure and constraint of EIB can exhibit chaotic behavior and 
long-tail power law distribution [53] [54] [55] [56] [57]. In Section 1.2, 
EIB-chaotic network may track mild perturbation, is robust to mild change in 
parameters, and meanwhile may demonstrate emergent linear input-output be-
havior [56]. EIB network may accommodate the observation of chaos and regu-
larity. Another appealing feature of EIB network is the rapid adaptation which 
reacts faster than the time constant of individual unit. EIB network may switch 
swiftly between different states [53]. This seems counterintuitive but the under-
lying concept has been introduced in the discussion of complexity (collective vs. 
individual), which is like that neural tissue may oscillate faster than the frequen-
cy of spikes of individual neuron, see Figure 2. 
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The brain is different from other chaotic/complexity systems because of the 
constraints of EIB, which may be further self-organized at criticality [1] [2] [74]. 
Although it is largely unknown how criticality is achieved, EIB, chaos and criti-
cality have each obtained empirical as well as theoretical support. We surmise 
that EIB is wired at criticality which enables the trajectory to be very flexible in 
the virtual brain space. Under the critical condition and in response to extero-
ceptive/interoceptive stimulation, the neuro-dynamics in virtual brain space 
shall engage in and depart away from an attractor easily (transition between dif-
ferent phases), which is correspondent to the execution and withdrawal of vari-
ous psychological representations or functions. The flexibility is endorsed by the 
sensitivity of chaotic system to slight difference in the initial condition. We 
would like to emphasize that power law, complexity, chaos, and inferred critical-
ity are phenomena and EIB may be the mechanism. 

It is noteworthy that the brain has an outstanding character that most com-
plexity systems do not capture, that is, top-down modulation. A distinguishing 
emblem of complexity system is the collective, emergent global pattern out of 
locally interacting of components. The collective dynamics of the brain, on one 
hand is constructed from its constituents but on the other hand, may conversely 
modulate the behavior of the elements at lower hierarchy, even to the most fun-
damental processing unit-neuron. The well-established instantaneous top-down 
modulation includes LTP on spikes, up- and down-state on cortical excitability, 
global oscillatory pattern (awake, aroused, relaxed and sleep stages) on neuronal 
dynamics, and attention (large-scale network) on neuronal/neural response to 
perception, and so on. This kind of interaction is in contrast to the inter-regional 
cross-talk or the phase-amplitude relationship between different spectra at 
roughly the same hierarchy [99] [100]. Namely, brain interaction is not only 
within but also across hierarchy. The bi-directional interaction, also substan-
tiated by EIB, may be a distinctive hallmark of the brain as a unique category of 
complexity system. The availability of top-down modulation may provide dy-
namic context to synchronize its constituents and may underlie real-time psy-
chological function, self, and consciousness. The intriguing bi-directional com-
plexity could be the neural foundation for an organism to be a “unity” [101]. 

4.4. Noise and Complexity/Chaos 

Spontaneous organized activity of OA projected to virtual brain space may 
represent the possible itineraries of the complexity system as discussed above, 
while noise of OA may shape the realization of the trajectory. For example, to 
hop to other possible attractors, noise may detour the route toward an unstable 
direction normal to the path hanging onto the extant attractor [102]. Introduc-
ing noise in the KIII model of olfactory bulb would not induce or suppress at-
tractors but may stabilize the aperiodic orbits where stability was defined by 
centroid and standard deviation (less than two) of spatial distribution from se-
quential samplings [91]. With the modeling of dendritic noise in network model, 
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the transition between attractors could become brisker; the data points distri-
buted less in the transitory route and more around the attractors [86]. To sum 
up, noise may play opposite roles for engaging in and disengaging from attrac-
tors. When the noise direction points away from or toward the center of an at-
tractor, the trajectory to an attractor is respectively destabilized or stabilized. 
Although noise itself may not be enough to induce chaos, synaptic noise was 
suggested to be able to tune the degree of complexity of neural activities, i.e., 
shuttling between chaos and regularities [102] [103]. From the complexity pers-
pective, adaptive noise (physiological) shall help the brain to locate to proper at-
tractors to fit with the survival demand of an organism. 

Since the properties of complexity/chaos and statistical randomness are both 
described in the brain, the apparent randomness may be the product of the two 
sources. Some researchers debated that true randomness does not exist in ma-
croscopic world and stochastic model is a convenient low-dimensional approx-
imation for high-dimensional chaos [103]. Incorporating stochastic randomness 
is only a simplified modeling strategy to handle the unexplained component in 
measurement, which is then called “noise”. Obviously, part of the noise belongs 
to the recording machine and hence non-physiological. Since each neuron has 
connection with thousands of other neurons, it is also suggested that large num-
ber of signaling and massive interaction in neural system may have aver-
aged/canceled out truly random noise (if exists) [50] [104]. In addition, the sto-
chastic firing pattern of cortical neurons may result from synchronous driving 
input, indicating hidden structure embedded in the irregularities [5] [105]. The 
above argument justifies the inclusion of physiological noise in OA and agrees 
with previous modeling research taking “noise” as a driving force in neural net-
work. The phenomenon of stochastic resonance (Section 6.1) thus may originate 
from physiologically meaningful underpinnings even though the stochastic 
component is modeled as randomness. The duality of chaos and regularity in 
OA has been discussed in previous sections and will be further elaborated in 
Section 7. 

5. Information Transfer at EIB 

Information can be defined in various ways. Among them, information theory 
(or communication theory) developed by Shannon is canonical and has moti-
vated substantial progress in many disciplines, such as thermal physics, statistics, 
engineering, evolution, biology, computational neuroscience, and coding and 
data analysis [106]. One of the key elements of information theory is entropy, a 
quantity of uncertainty based on the distribution of selected random variables. 
Shannon’s information theory may be of limited application in other fields 
[107], nevertheless, it is still versatile nowadays. Freeman made an interesting 
contrast between artificial and biological networks: what processed for the for-
mer are bits, symbols, and information, whereas what processed for the latter are 
flows, patterns and meaning [108]. This contrast is insightful and reminds of the 
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distinction of “psychological primitives—neural features” and “mental spa- 
ce—virtual brain space”. Freeman claimed that “artificial neural network can be 
built to manipulate symbols in codes that convey information in the sense de-
fined by Shannon and Weaver, who divorced information from meaning, bio-
logical neural network offers dynamics of meaning...”. The content discussed in 
this section mainly resorts to entropy as a quantifiable surrogate of information 
amount. 

5.1. Dynamic Range of Neural Activity at EIB-SOC 

Experimental work has demonstrated that at EIB-SOC the dynamic range of in-
put processing is maximized. Shew et al. studied organotypic culture of rat so-
matosensory cortex on microelectrode arrays [109]. The authors adjusted exci-
tatory and inhibitory balance by the application of antagonists of fast glutama-
tergic (AP5/DNQX) and GABAergic (PTX) synaptic transmission. For both 
spontaneous and stimulus-evoked activities, the former and the latter would re-
spectively reduce and increase the amplitude of LFPs. In either case, the slope of 
power law was deviated from the condition without administration of drugs. It is 
interesting to note that the range of the stimuli to that the system responded sig-
nificantly shrank with either AP5/DNQX or PTX. Their findings implied that at 
the original equilibrium state, dynamic range in the cortical network was opti-
mized. Under the exposure of AP5/DNQX, not PTX, the probability of cluster 
size seemed still conformed to power law (Figure 2A, p.15597) [109], which 
echoed the query that power law alone may not guarantee criticality. Neverthe-
less, it is reasonable to infer that disruption of EIB also compromised criticality 
given that neural EIB is believed to be situated at SOC. 

In collaboration with Shew, Larremore et al. adopted a modified version of 
Kinouchi-Copelli model to explore the issue of criticality and dynamic range in 
complex/heterogeneous networks, constituted by connected and excitable nodes 
[110] [111]. Like Shew et al.’s previous study, stimuli of different intensities were 
imported in the computational simulation and the range that the stimuli pro-
duced distinguishable responses was delineated. The authors demonstrated that 
when the response to perturbation revealed drastic change (criticality), the dy-
namic range of the network was maximized. Similar conclusion was also reached 
by Kinouchi and Copelli who proposed that the sensitivity to external stimuli at 
criticality may underlie the amazing human sensory capabilities to encode ex-
ternal information spanning across several orders of magnitudes [111]. 

In addition to the stimulus-response profile, it is also possible to define dy-
namic range by the number of meta-stable states, which can be quantified as the 
cluster number of spatio-temporal patterns. Haldeman and Beggs found that for 
large network and across different degrees of connection per neural node, the 
number of meta-stable states was maximized at the branching parameter equal 
to one (EIB) [112]. Deco and Jirsa’s network model adjusted the inter-regional 
coupling strength until a network began to disclose drastic “phase transition”, 
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[2], and chose that state as criticality. The authors found that within a particular 
“range” of global coupling strengths, the system possessed multiple attractors 
and higher entropy value. The property of “range”, instead of a particular value, 
of parameter is welcome since it is conceptually like SOC where the system be-
haviors are robust to mild parameter change. Furthermore, the simulated neural 
dynamics was transformed to BOLD signals via Balloon-Windkessel model [113], 
and around the critical point the similarity between the functional connectivity 
maps generated by theoretical and empirical approaches reached optimum. 

5.2. Maximization of Information Transfer at EIB-SOC 

Evidence suggests that not only the dynamic range of information processing 
but also the amount of information transfer is maximized at EIB-SOC. Extend-
ing previous research of pharmacological intervention (Section 5.1) on neural 
tissue culture, Shew et al. applied information theory to investigate the capacity 
of information transmission while EIB was disturbed [114]. The spontaneous ac-
tivities were measured by microelectrode array which showed maximal informa-
tion capacity at original equilibrium state, and the administration of either 
AP5/DNQX or PTX would decrease the entropy value. The optimality of entro-
py was present across several different bin sizes and recorded duration. In addi-
tion to resting state, the authors also studied the evoked responses of neural tis-
sues. One electrode was selected to deliver electrode shock and the averaged 
pair-wise mutual information was calculated as an index of information trans-
mission. Here, the pair-wise mutual information can be viewed as the degree of 
similarity of the evoked neural responses between two recording sites. Again, 
optimized information transmission was reached at original EIB. 

In the classical paper of neuronal avalanches, Beggs and Plens designed mul-
ti-layered feed-forward network to explore the impact of branching parameters 
on information transmission, i.e., mutual information between input and output 
[64]. The computational simulation results implied that when the branching pa-
rameter equaled one, indicating EIB, the information transmission was max-
imized. Reduction in branching parameter would enhance the stability of the 
network but at the cost of sub-optimal information processing. Regarding the 
optimized information transfer at EIB, the results of computational and experi-
mental approaches thus converge. It is noteworthy that equilibrium does not 
mean stability; by contrast, equilibrium frequently indicates meta-stability. 
Conceptually, stability can be quantified by the amount of energy that is re-
quired to perturb a system to leave an attractor. EIB is organized at criticality 
where certain equipoise between stability and instability is reached so that fidel-
ity of information is retained but flexible trajectories/states/attractors are also 
allowed to engage for the forthcoming signal processing. 

This paramount phenomenon reviewed in this section has been examined in 
various input-driven adaptive models, such as cellular automata, Boolean net-
work under selection pressure, recurrent neural network (with real-time com-
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putation) and spiking neural microcircuit [115] [116] [117] [118] [119]. It is not 
an exception but seems quite common that meta-stability can be beneficial for a 
system. Bak and Chialvo constructed an adaptive network with its connections 
pruned based on simple rules: trafficking through strong connections and re-
ducing connection strength in case of error [120]. The authors noticed that al-
though the dynamics of the network were minimally stable, flexibility, adaptabil-
ity and learning/unlearning were nicely balanced so that the system may handle 
complicated non-linear tasks, even if contaminated by noise. It has long been 
noticed that complexity system may emulate the functions of perception and 
memory [86]. At criticality, it was demonstrated that an adaptive network may 
also learn logical rules, even “exclusive OR” which is difficult to model in pre-
vious research [121]. 

5.3. Reduction of Variability and Enhancement of Fidelity at EIB 

Through organized EIB at criticality, there may exist several meta-stable states. 
Based on the understanding that external stimuli may drive the neural dynamics 
to fix on certain attractor, it is reasonable to expect that the variability of OA 
would shrink in response to external perturbation. That is exactly what recent 
empirical evidence has verified. A comprehensive study by Churchland et al. 
who examined twenty datasets of extra- and intra-cellular recordings disclosed 
that the onset of stimuli consistently quenched neural variability [122]. The re-
duction of variability (indicated by Fano factor) to external stimuli was such a 
general property of cortex that it prevailed over different modalities (membrane 
potentials or spikes), stimulus categories, brain regions and states (awake, be-
having, or anesthetized). Biyu He who investigated the interaction between OA 
and external stimuli (target detection) using fMRI also found that the volume of 
activity space in post-stimulus condition shrank compared with that in 
pre-stimulus condition [123]. Churchland et al.’s conclusion thus is extrapolated 
to large-scale network, applicable from microscopic to macroscopic levels. 

Since brain dynamics can be regarded as the manifestation of neural network, 
the noticed variance decline implies that the behaviors of cortical circuits be-
come more stable (or more consistent) when being driven, either locally or qua-
si-globally. There are several network types that can be stabilized by an input, 
among them recurrent network perhaps is the most pertinent [124] [125]. 
Widespread presence of recurrent circuitry is noticed in the neocortex and, the 
recurrent thalamo-cortical resonance has been proposed to be central to neural 
oscillations and to the mental functions of sensory integration, temporal bind-
ing, attention, sleep and consciousness [45] [126] [127] [128]. Deco and Hugues 
investigated the phenomenon of variance reduction of a recurrent neural net-
work [129], again resorting to integrate-and-fire model [2] [130]. The simulated 
research replicated that external stimulation would stabilize the network at one 
specific attractor, resulting in a net decrease in neural variability. The authors 
analyzed the distribution of inter-spike intervals and concluded that the reduced 
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variability arouse from an increased regularity of the neural spike trains. A re-
cent computational study also disclosed that under the term of EIB, the attractor 
networks may replicate the experimentally observed reduction of variability to 
external stimuli [55]. It is noticeable that fixation on one attractor is a simplified 
scenario to account for the phenomenon of reduced variance to external stimuli. 
External input itself may suppress chaos in a recurrent network and hence leads to 
variance reduction [131]. Another theoretical work based on integrate-and-fire 
model noticed that EIB with mild delay in suppression may also decrease the 
temporal variability of neural output to external stimuli [41]. The temporal lag 
of inhibitory inputs to excitatory inputs is supported by empirical studies of au-
ditory and somatosensory neurons [40] [41], implicating that through the or-
ganization of EIB the fidelity of signal transfer can be further enhanced. In 
summary, variance reduction to external stimuli is a common phenomenon of 
recurrent neural network, while constrains such as criticality and EIB (or 
EIB-SOC) may contribute to it. 

Although earlier reports had suggested that variable neural responses to sti-
muli can be explained by the linear summation of the deterministic evoked re-
sponse and the OA [132] [133], convergent evidence implicates that there is ac-
tually an interaction between them. The studies discussed above have revealed 
how external stimuli (EA) may influence OA. It is well known that external sti-
muli may also alter OA’s coherent spatio-temporal structure via other validated 
mechanisms, such as phase resetting, and consequent event-related synchroniza-
tion or desynchronization [134]. Actually, baseline OA may also contain and 
modulate EA (see Section 6.3); in other words, their interaction is bi-directional. 
According to our definition, the interactive effect between OA and EA belongs 
to the fourth component of OA. The above cited research mainly focuses on the 
neural dynamics within restricted temporal range. With development from 
childhood to adulthood, increased baseline variability (in contrast to reduced 
variability to external stimuli) is associated with maturation of brain and better 
behavioral performance, which will be discussed in more detail later (Section 7). 

6. Function and Characteristics of OA 

We decompose OA into spontaneous organized neural activity (e.g., oscillation 
and chaos in EEG/MEG and in fMRI; neuronal spikes and subthreshold mem-
brane dynamics at microscopic scale), physiologically beneficial randomness 
(physiological noise), non-physiological noise, and the interactive effects from 
exteroceptive and interoceptive stimuli. This section addressed the physiological 
function of OA, particularly physiological noise and spontaneous organized 
neural activity. It will become clear that there is no clear cut boundary between 
regularity and complexity, noise and signal, or EA and OA. 

6.1. Stochastic Resonance and Physiological Randomness 

We distinguish biologically relevant noise from irrelevant one. It seems counte-
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rintuitive to assume that noise could be beneficial in terms of computation. In a 
non-linear threshold system, however, stochastic resonance (SR) happens (in its 
most primitive form) when weak/subthreshold periodic signal that is normally 
undetectable, can be boosted and detected by adding broadband noise to that 
signal, which usually appeared as a spectral peak at signal’s frequency against the 
noise-floor background, thus the term “resonance”. The phenomenon of SR was 
first discovered in a study of climatic oscillation and then spread to many other 
disciplines, such as physics, chemistry, engineering, electronics, lasers, ecology, 
psychophysics, cell biology and neuronal physiology [135-137]. With theoretical 
and experimental extension, SR has been applied to describe any phenomenon 
in a non-linear system where the presence of noise is better for output signal 
quality than its absence—noise benefit [137], see Figure 6. 

In neurons and brain, the phenomenon of SR has gained support from two 
research lines. First, together with subthreshold stimuli, externally added noise 
may enhance sensory information processing and perception [136]. For these 
studies, the administered random fluctuation is not naturally occurring in the 
central nervous system but is part of the external input, though. The second 
branch of evidence comes from biomedical research, such as exploitation of SR 
in cochlear implant to improve hearing [138]. Biological utility of SR, i.e., neurons  

 

 
Figure 6. Illustration of stochastic resonance. Plot (a) shows that input of weak signal into a system 
does not generate observable spectrum change. The right subplot is the spectral distribution, with arbi-
trary units of logarithmic power (ordinate) and frequency (abscissa); Plot (b) shows that input of signal 
plus noise makes weak signal detectable, as a spectral peak. 
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make use of internally generated physiological noise to enhance information 
transfer, thus is indirectly inferred. Nevertheless, we believe that the brain has 
evolved to utilize some random noise for proper functioning. As to the source of 
noise in the nervous system, Faisal et al. has an excellent review from molecular 
to macroscopic and from sensory to motor levels, which further linked neural 
noise to behavior variability [50]. 

Previous models of SR derived from other disciplines may lack biological ap-
propriateness. The manifestation, property, and function of noise in neural sys-
tem are different from traditional SR in physics and engineering fields. To re-
concile theoretical and experimental neuroscience, McDonnell advocates using 
the term “stochastic facilitation” to replace SR in biological research [29]. It is 
interesting to note that noise induced enhancement of signal processing depends 
upon the fact that the parameters of the non-linear model are “sub-optimal” 
[139]. Engineers usually improve the performance of a model by updating the 
parameters rather than adding white noise. A natural question ensuing is why 
the evolutionary force does not shape the brain to adopt the best neural parame-
ters as engineers do? A likely answer is that universal optimization is never 
achievable since the challenge the organisms need to face every day is extremely 
diverse and varied, which may keep on changing with time and life cycle. Fixed 
and “best” model parameters in some conditions may endanger the organisms in 
other situations. The advantage of SR in the brain may thus represent a com-
promised strategy between adaptation and flexibility, not an optimal model for 
every scenario but still the best strategy of survival. Although contradictory to 
traditional engineering dogma, it is increasingly acknowledged that noise and 
meta-stability may benefit an adaptive system. 

6.2. Synaptic Noise May Facilitate Signal Transfer 

Empirical evidence has pointed out that background synaptic activity may shape 
the probability and variability of response to stimuli [140] [141] [142]. For cor-
tical neurons, the background “noise”, i.e., the fluctuation in membrane con-
ductance and membrane potential, may result from the constant bombardment 
of synaptic potentials (a class of biological origin of SR). In response to sponta-
neous synaptic inputs, neurons in vivo may produce 15 mV membrane depola-
rization, 10 mV voltage fluctuation, 80 percent decrease in resistance and dis-
charge at 2 - 10 Hz, much more active than the neurons prepared in vitro lack-
ing abundant inter-neuronal connections [141] [143] [144] [145]. Other sources 
of local noise for a single neuron may include random leakage of electric current 
from neighboring neurons and quantal emissions of synaptic vesicles. It is 
well-known that the undulation of synaptic excitability (not reaching firing 
threshold), the second kind of OA, has profound influence on the integrative 
and electrophysiological properties of neurons [144] [146] [147] [148]. With 
comprehensive setting of parameters, Fellous et al. adopted dynamic clamp 
technique, point conductance model, and injection of calculated electrical cur-
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rent to the neuron soma in rat brain slice to simulate background synaptic activ-
ity [141] [149] [150]. The authors discovered that the power for neurons to 
detect transient current pulse was greatly enhanced in the presence of sponta-
neous background activity. Similar conclusion was also reported by other inde-
pendent research group that the capability to detect small stimuli was dramati-
cally increased with spontaneous fluctuation of membrane potential and con-
ductance [140]. Shu et al. differentiated “up” and “down” states of neurons by 
conductance, spiking rate, and the degree of depolarization [140]. “Up” state can 
be simulated by certain depolarization and added Gaussian noise and, the noise 
may increase the spike response to applied small current, similar to SR. Faure et 
al. demonstrated that what had been called “synaptic noise” indeed contained 
periodic components which reflected the behaviors of pre-synaptic interneurons 
and enhanced the transmission efficacy of oscillatory temporal patterns [151]. 
Again, taking neuronal spikes in vivo as stochastic or random does not mean 
that neuron firing is governed by no rule. It is a convenient way to accommodate 
the complicated structure of pre-synaptic bombardment. Although it is debata-
ble whether the mechanism of improving signals processing is different from the 
SR used in engineering field, these exquisite studies nevertheless have provided 
important insight that synaptic background activity (second type of OA) facili-
tates signal transmission. 

6.3. Exploration of Dynamic Repertoire 

From the perspective of fractal geometry, OA may empower a system to transit 
between attractors, as already introduced in Section 4.4. This sub-section high-
lights some far-reaching empirical evidence to disclose the relevance of OA to EA. 
It is well acknowledged that spontaneous organized activity of OA is not purely 
stochastic randomness but contains repeated and coherent spatio-temporal pat-
terns. These reverberating motifs are verified in vitro and in vivo by different 
research groups, may correspond to information storage or implicit retrieval 
and, may correspond to the neuronal/neural codes [5] [6] [7]. The robust and 
stereotyped reactivation may occur with precision of milliseconds [5]. 

At large scale level, based on the functional connectivity maps derived by 
resting fMRI or PET, there are modular structures compatible with major psy-
chological functions [9] [11]. Since the resting dynamics is organized according 
to psycho-physiological domains, it is intuitive to assume that the intrin-
sic/spontaneous brain activities are not idling (or just in rest) but may be rele-
vant to normal brain functioning. Tsodyks et al. combined optical imaging and 
single-unit recording to establish the relationship between population activities 
and single neuron spikes to visual stimuli, and then to explore the relationship 
between evoked and spontaneous neural activities [26]. Their results implicated 
that spontaneous neural activities, both at neuronal and population level, ac-
tually resembled evoked neural activities. Further, the relationship between pop-
ulation and single neuron dynamics in evoked condition still retained in resting 
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condition. Berkes et al. measured the visual cortex activities of awake ferrets ex-
posed to natural scenes, artificial stimuli, and nothing across successive postnatal 
ages [28]. The authors disclosed that with increasing ages the Kullback–Leibler 
divergence between evoked activities to natural scenes and spontaneous activi-
ties (exposed to nothing) drastically decreased and the similarity of their fre-
quency distributions increased. Their results indicated that spontaneous cortical 
activities may come from an internal model optimal to represent the environ-
ment which is improved with maturation. The above two elegant studies provide 
strong evidence that the neural features of evoked responses are actually em-
bedded in the spontaneous/intrinsic brain activities (first class of OA). Luczak et 
al. explored the firing pattern of neuron population (tens of neurons) in rat au-
ditory cortex over different conditions, i.e., tones, natural sounds, and resting 
condition [27]. They discovered that the contour of each stimulus categories 
(different frequencies of tones and different natural sounds) were actually sub-
sets within the contour of spontaneous neural events. In other words, audito-
ry-evoked responses lied within the realm outlined by spontaneous activities. 
Replay of EA in OA in sleep is supposed to reflect memory consolidation 
process, which is not only regional but also shows inter-areal coherence, such as 
between visual cortex and hippocampus [152]. To sum up, spontaneous brain 
dynamics comprise neural activations of specific evoked events, i.e., resting is 
similar to activation, and past reappears in present. The intimate relationship 
between resting and activation states are thus established across different obser-
vation levels, from neuronal [26], to neural population [27] [28], and to 
large-scale network [9] [10] [11], and across different states (from awake to 
sleep) [152]. The highly preserved patterns may result from re-emergence of 
neuronal/neural codes that may be enabled by structured and intricate EIB (dis-
cussed in Section 7). 

Given the abundant information carried by OA, it is reasonable to assume that 
their characteristics may have strong psychological, biological and clinical im-
plications. That is exactly the case and a few of them are listed below. It was 
found that baseline activities may play substantial role for the fluctuating con-
scious experience. Higher baseline activities in medial thalamus and fron-
to-parietal region and lower analogs in default mode network may facilitate the 
awareness of somatosensory stimulation [153]. The baseline undulation of ante-
rior cingulate area may also predict the perceived degree of pain. Similarly, evi-
dence suggested that enhanced pre-stimulus intrinsic activities in fusiform face 
area may bias the perception of Rubin’s vase-face picture toward face [154]. The 
spectrum power and functional connectivity of spontaneous cortico-electrical 
dynamics may explain several fundamental mental capabilities, such as intelli-
gence and target detection [155] [156]. Conversely, perceptual learning may 
modify the covariance structure of resting dynamics [157]. The impact of intrin-
sic state research on psychology field is brewing and their bi-directional rela-
tionship in increasingly appreciated [101] [158]. 
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7. Variability-Oriented Approach 

The research team at Rotman Research Institute of Baycrest, Toronto has a se-
ries of influential work on the issue of brain signal variability. The material cited 
in this section mainly honors their contribution. 

7.1. Variability of Central Nervous System 

Both variance and entropy are frequently used to represent the degree of uncer-
tainty and variability. The optimum of entropy does not guarantee the optimum 
of variance. Nevertheless, in the condition of Gaussian distribution, there is a 
monotonic relationship between variance and entropy, and thus they can be re-
garded as equivalent. Given the contribution of EIB-OA to information transfer 
as highlighted above (e.g., variability reduction in Section 5.3), it is reasonable to 
infer that variability-oriented approach is informative in neuroscience, which 
however, has long been under-appreciated. A major proportion of previous 
neuroimaging studies have resorted to mean-based measures (e.g., GLM) instead 
of variance (or standard deviation) based counterparts. The neurobiological ra-
tionale behind variability-oriented approach has been described in Section 5.3. 

With massive interaction as a core feature, multivariate brain informatics is not 
completely independent, which is also termed “spatial correlation”. To tackle strin-
gent multiple comparison correction, GLM is often combined with other mathe-
matical tools such as random field theory [159] or Monte Carlo simulation [160] to 
provide reasonable statistical inferences. How about variability-oriented approach? 
One possible solution is by way of partial least square (PLS). First developed in the 
late 1960’s by econometrician and statistician Herman Ole Andreas Wold and 
largely expanded in the field of chemometrics, PLS is a data-driven harness that can 
explore the relationship between data in matrix form, thus multivariate in nature. 
Randy McIntosh is the pioneer who introduced PLS to neuroimaging circle [161]. 

Garrett et al. used PLS to examine the relationship between variability maps of 
fMRI signals and several biopsychological profiles, such as chronological age and 
the performance of various psychological tasks [162] [163]. They compared the 
results of mean-based and standard-deviation-based analyses and disclosed that 
the variability-oriented approach not only showed different (partially over-
lapped) spatial patterns but may also provide higher predictive power compared 
to mean-based analogue [162]. In detail, younger, faster, and more consistent 
performers exhibited higher brain variability across cognitive tasks of perceptual 
matching, attention cueing, and delayed match-to-sample [163], indicating that 
brain variability is functional (not merely useless noise) and that increased va-
riability in the central nervous system may underlie neural efficiency and may 
further reduce behavioral variability, concordant with its connection to entropy 
and echoing the psycho-physiological function of OA. 

7.2. Variability in Behavior and Its Relevance to the Brain 

From the perspective of development, behavioral performance improves in 
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terms of accuracy, enhanced speed, and reduced trial-to-trial variability. McIn-
tosh et al. found that variability in EEG signal increased with maturation [164], 
like the finding of fMRI study by Garrett et al. [162]. In addition, the brain va-
riability was negatively correlated with intra-subject variability in reaction time 
and positively correlated with accuracy. Further research replicated that the va-
riability not only increase with maturation but its association with task was re-
gion specific [165]. During development, enhanced neural variability may indi-
cate broader repertoire of mental attractors or microstates. By contrast, in-
creased intra-individual behavioral variability and progressive impairment in 
performance were accompanied with aging, and the possible cause could be the 
decreased connectivity and hence, associated with reduced neural variability. 
Accordingly, the relationship between age and behavioral variability across li-
fespan can be characterized by a U-shaped function, while that between age and 
brain variability could be an inverted-U curve [166] [167]. Increased variability 
in performance has been observed in various mental disorders, such as demen-
tia, traumatic brain injury, and attention deficit hyperactivity disorder [166]. A 
recent report supported that greater variability in the elderly brain is associated 
with better memory and fluid intelligence [168]. 

To examine the origin of increased complexity of brain dynamics in develop-
ment, Vakorin et al. used conditional entropy and mutual information to re-
spectively represent local and distributed variability [169]. The authors found 
that developmental change was accompanied with reduced local information 
processing and enhanced global information transfer, implying that in-
ter-regional interaction and distributed network may underlie the observed 
brain variability change in maturation. There are two caveats worthy of mention 
here. First, not every aspect of neural variability implies information processing. 
For example, when considering latency variability in ERPs and reaction time, the 
inverse relationship of brain signal variability and behavioral variability no 
longer exists. Second, in the conditions of increased neural noise such as neu-
ropsychiatric disorders (at least in some regions) [166], the composites of brain 
signal variability are not necessarily “physiological” and variability-oriented ap-
proach might lead to equivocal conclusion—the patients may show lower physi-
ological but higher non-physiological variability (2nd and 3rd kinds of OA), whe-
reas the healthy controls may exhibit opposite trend. 

8. Sparse Coding and Difference-Based Coding and EIB 

Although criticality and complexity are the core concepts to account for the cru-
cial characteristics of neural computation, it is not sufficient to describe how the 
neural system encodes and decodes information precisely. OA is not completely 
random, instead, contains spontaneous activities showing stereotyped spa-
tio-temporal patterns (note: chaos may also show “varied” but conspicuous spa-
tio-temporal patterns). These stereotyped motifs are possible forms of neuron-
al/neural codes [5] [6] [7]. For neural system, encoding and decoding happen in 
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a real time manner. Some statistics, such as momentum, kurtosis, spectrum and 
so on, are not ideal candidates of neural codes because these quantities demand 
certain sample size to calculate and decode accurately, thus not instant enough. 
Neuronal codes, innately, are in a form of brief spike trains (transients) as ob-
served in intra-cellular or extra-cellular recordings, in vitro and in vivo. This 
section discusses one of the patterned manifestations of OA, i.e., neuron-
al/neural code, and this stereotyped OA is enabled by the underpinnings of 
structured EIB. Among the postulated classes of neuronal/neural coding, sparse 
and difference-based codings, in opposite to the tedious stimulus-based analog, 
are the most essential [158]. 

8.1. Sparse Coding 

How does the brain read (decode) the encoded neural codes to generate percept? 
It seems reasonable to assume that the neural codes must carry the same amount 
of information as the given percept. In accord, some research applied non-linear 
filter to neuronal spikes to reconstruct waveform that is as similar as the physical 
features of external stimuli [170]. Another coding possibility is through Bayesian 
probabilistic model (i.e., posterior probability) that may require less “bits” of 
input to make inference and thus is more efficient since the perceptual system 
has been tuned to naturalistic stimuli through evolution and development (i.e., 
prior) [28] [171]. It explains why human cognition may conjecture the whole 
from the part and may make decision under sub-optimal condition or uncer-
tainty [172]. However, recent evidence has suggested sparse coding. On one 
hand, given the limited metabolism budget, the permissible level of traffic is 
quite low in the brain, not allowing the massive amount of full-loaded informa-
tion flows to travel [173] [174]. On the other hand, single-unit recording reveals 
that the structure of neuronal transients can be much more frugal than pre-
viously thought [175] [176]. In auditory cortex, neurons may even show binary 
responsiveness regardless the duration and frequency of tone pips [177]. Here, 
“binary” means either only one or zero spike to each trial of auditory input (bi-
nary coding). Binary coding is the most basic form of sparse coding, equipped 
with low variability and high fidelity. 

Strong evidence of sparse coding comes from vision research, even in the early 
stage of visual system [178]. It seems counter-intuitive that sparse codes may 
register the time varying, vast amount information flood about the environment. 
However, the coding strategy has gained support from theoretical, computation-
al and experimental perspectives in different sensory modalities, motor system, 
and higher cognitive function (e.g., associative memory and hippocampus) [179] 
[180]. Sparse coding seems to be a general coding strategy in the brain, with the 
degree of sparseness increasing from lower to higher processing areas. It is in-
teresting to note that shorter coding sequences may union to form longer repeti-
tive motifs (cortical songs), whereas the subsets of a particular spatio-temporal 
pattern may organize themselves to form other patterns [5]. The re-combination 
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of spiking sequences may have to do with the coding of binding, interaction, or 
context effects, and importantly, may greatly enrich the manifestation of neu-
ronal/neural codes, see Figure 7. 

For sparse coding, obviously the pros are the efficiency, and the cons are its 
limitation to represent the detail of internal and external world. Is it inadequate 
for sparse code to correspond to the varied and complicated reality? The answer 
could be no. So copious, profuse, and affluent, resting/intrinsic/spontaneous 
brain dynamics is proposed to be the neural baseline for neural codes to interact. 
Together with the complexity theory of brain, especially the attractors embedded 
in resting dynamics [26] [27] [28], sparse coding may just initiate the neural tra-
jectory to fix on one attractor to reach a psychological certainty (may also shape 
the original complexity structure to some extent) [131], not necessarily having to 
carry every detail given. We name it “code driving complexity hypothesis” [181]. 
Since chaotic dynamics is sensitive to initial condition, neuronal/neural code is 
different from random perturbation because it may guide the trajectory toward a 
pertinent attractor. In this regard, neural code can be viewed as a facilitator, 
messenger, or stabilizer, which is supported by theoretical work of intercon-
nected oscillators in which external cue may stabilize and create an “attentive” 
state [88]. The above scenario is endorsed indirectly by phase-reset model of 
ERPs, and by even-related synchronization and desynchronization phenomenon 
in the cortex [134]. The research by Tsodyks et al., detailed in Section 6.3, also 
verifies that neuronal codes have close relationship with the population dynam-
ics [26]. The intrinsic brain activities (OA) themselves may enable conscious-
ness, and the configuration and the focus of attractor may determine what pops 
up in our experience. The potential role of complexity theory in consciousness 
was inferred the fractal dimensions of neural correlates in various mental states, 
increasing with wakefulness [182]. 

Up until this point, regularity and complexity is integrated by “code driving 
complexity hypothesis”, while other schemes to bridge the two are surely possible 

 

 
Figure 7. Neuronal codes embedded in spikes. Plot (a) shows simulated neuronal spikes 
with varying amplitude. Plots (b), (c) and (d) disclose the repeated regular spike patterns 
(codes) that can be deciphered from the original semi-random spiking trace. 
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(such as STDP). Sections 5 to 7 touch upon the intimate relationship between 
chaos/stochastic and regularity (information, entropy). Again, the underlying 
mechanism is EIB-OA which serves a common ground for the versatile dynam-
ics to occur. Unlike Bayesian brain theory, optimality is not coerced for sparse 
coding and complexity theory, which may conceptually accommodate wider 
bio-psycho-social variables and situations, such as making errors, framing effect, 
behaving according to sub-optimal choice, etc [183] [184]. Previous simulation 
study of chaotic system revealed that if the learning rule has been established, 
incomplete external stimuli can still be recognized [89]; the conclusion was 
drawn by sending incomplete input to the network to obtain similar output as in 
the case of complete external stimuli. EIB-OA thus also provides a potential al-
ternative account for trace-elicited memory (a case of incomplete input). 

8.2. Difference-Based Coding 

The evidence of different-based coding as a general coding principle stems from 
reward research. The midbrain dopamine neurons encode the differences be-
tween anticipation and reward, which is further modulated by their temporal 
interval [185]. Difference-based coding not only applies in the temporal but also 
in the spatial domain [186]. Neuronal membrane has been modeled as an 
“integral operator” that may integrate various pre-synaptic bombardments and 
local biochemical events [1] [3] [130]. It seems that there also exists a “differen-
tial operator” in a neuron which registers the differences between “now” and 
“expected”, between “here” and “neighbors”, and then converts the differences 
into neuronal/neural signals. 

What is the underlying EIB mechanism for the differential operator? Previous 
research on the temporal precision between excitatory and inhibitory inputs 
provide vital clue to this issue [40] [41]. The timely quench of excitation by inhi-
bition within several milliseconds behaves just like a differential operator. Inhi-
bitory interneurons are local, while excitatory inputs can be local or distant. 
When the inhibitory inputs bring information of local state, such as anticipation, 
and the distant excitatory input register external perturbation, such as extant 
reward, the consequent neuronal spike would issue the differences between 
them, exactly what difference-based coding refers to and empirical data suggests. 
Similarly, when the inhibitory input carry movement information of nearby 
neurons (local) and the distant excitatory input denotes the motoric goal, the 
resultant neuronal activity would guide the neuron to be coherent to the global 
aim, again via differential operator [186]. It is imperative to note that the pur-
pose of wired EIB is not limited to balancing excitation and inhibition or attenu-
ating excitation by inhibition. Through the dynamic balancing of excitatory and 
inhibitory imports across spatio-temporal domains, information is processed, 
and difference-based coding is fulfilled. 

It is interesting that the temporal scales of EIB and neuronal avalanche are 
both situated at several millisecond level-4 msec was proposed by independent 
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research groups [7] [41]. The coincidence is not fortuitous because the temporal 
lag between excitation and inhibition is expected to be the “life span” of the pat-
tern in neuronal avalanche. It has been suggested that 25 - 50 msec is a unit of 
psychological time [86] [187], whereas molecular events, neuronal codes and 
pattern in neuronal avalanche seem too brief to match psychological function-
ing, suggesting that the collective dynamics in virtual brain space (attractor or 
itinerary) is a better candidate corresponding to psychology in mental space 
[188]. Figure 8 summarizes the contents of EIB-OA in previous sections. 

8.3. Luxurious Energy Expenditure?  
Coding, Chaos, Efficiency, and Economy 

The human brain weighs around 2.50 to 3.25 pounds (2 percent of body weight), 
but it consumes 20 percent of body oxygen and 25 percent of glucose utilization 
for adults [189]. The brain maintains high metabolic level across varying mental 
activities [190], which is relatively constant in resting wakefulness and reduced 
by only 15 percent in sleep [191] [192] [193]. Why human brain demands so 
much energy even at rest? 

In Section 6.3, it has been pointed out that resting state may actually contain a 
replica of EA. Further, the brain has evolved to present OA all the time. It is im-
perative to note that OA is not a privilege of the vertebrate but also exists in the 
brains of arthropod and insect [194]. Aplysia ganglia may generate stable 10 Hz 
activity. OA in the central nervous system is a fundamental phenomenon of life. 
Keeping the active structure handy in virtual brain space is crucial for con-
sciousness, self-function, adaptation, instant reaction, coping with challenges, 
and for learning through plasticity to consolidate. A substantial portion of brain 
energy spent in OA fuels the itinerary and repertoire in the virtual brain space. 
With its resonance with organism’s internal state and inclination [126] [128] 

 

 
Figure 8. A summary of EIB-OA and its characteristics. 
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[195] [196], OA (directed by coding) may help the organism to engage in the 
preferred or advantageous system route and hence, response profile. On the 
contrary, without OA, the brain will become monotonous, then adaptation and 
flexibility will be limited. 

Efficiency and economy are guiding principles of physiology. It is estimated 
that human brain has roughly 1012 neurons, 1015 synaptic connections between 
them, 1024 elementary molecules/second engaged in brain activity, and 108–1012 
bits/second of information received from environment [197]. Although the 
brain expends disproportionate energy relative to its weight, it has organized it-
self to be economic. Around 15 - 20 watts only are consumed by human brain, 
which could be 10 million watts using modern chip technology with comparable 
intricacy [45]. In other words, “luxurious” is superficial; the brain has already 
evolved to be stringent on energy expenditure but still maintains efficient. Put it 
in another way, the brain must be efficient to be economic without sacrificing 
reliability, which could be substantiated by several mechanism, such as the de-
signs of thresholding machinery in neurons, quench of excitation in millise-
conds, and (sparse) code driving complexity. Based on the organized EIB-OA, 
the brain may simultaneously take care of contradictory facets, e.g., efficiency 
and economy, using limited budget in real time. The mechanisms that the brain 
saves energy are depicted in Figure 9. 

 

 
Figure 9. Upper right: brain dynamics is always active. Illustration of 3 mechanisms that the brain uses to save 
energy. (a) Neuron is designed as a thresholding machinery; (b) EIB allows the neurons to fire intensely in a brief 
time span (before the excitation is quenched by inhibition); upper: the firing of neurons, lower: red and blue re-
spectively indicates excitatory and inhibitory inputs; (c) The design of (sparse) code-driving complexity may save 
energy expenditure; blue lines at the top and bottom imply the amount of energy consumption, which is boosted 
at the source and target nodes but maintains frugal during information travel between the nodes. 
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9. Conclusion 

Balance between excitatory and inhibitory forces is the elementary building 
blocks for many if not all physiological phenomenon, such as hormone and au-
tonomic regulations. In the brain, EIB is constructed at different levels of infor-
mation processing, from microscopic to large-scale. Under the constraint of EIB 
at (self-organized) criticality, the OA of neuronal/neural tissue may engender the 
phenomena of complexity, power-law distribution, meta-stable equilibrium, 
multi-stable states, maximized dynamic range, optimized information transfer, 
difference-based and sparse coding, neuronal avalanches, both efficiency and 
economy, and reproducibility of evoked spatio-temporal motifs/patterns. As a 
complexity system, brain is unique in its intensive interacting features: regional, 
inter-areal, cross-spectrum, cross-hierarchy and particularly, its top-down mod-
ulation. It is noteworthy that the chaotic component of OA may contain promi-
nent structure, while the regular component of OA may possess some characte-
ristics of chaos. The distinction of regularity and chaos may be sometimes arbi-
trary, and the two can be bridged by several mechanisms, such as STDP and 
“code driving complexity” mechanisms. It is desirable for empirical neuros-
cience to examine the excitatory and inhibitory designs at different scales and 
regions to better understand EIB. 
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