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Abstract 
The flow dynamics is analyzed through two-dimensional numerical simula-
tions around two circular cylinders arranged side by side, with 4 combina-
tions of alternating motions. All simulations are performed for Re = 1000, 
amplitude of oscillation (A) equal to 3, frequency ratio (fr) of 0.5, specific ro-
tation (α) equal to 0.5 and different values of spacing ratio (L/D). It is verified 
that the combination of the type of movement, together with the position of 
one cylinder in relation to the other, exerts significant influence on the flow 
dynamics, as well as on the pressure distribution around the cylinder surface 
and on the average values of the fluid dynamics coefficients. The smallest 
value of the average pressure coefficient (Cp = −3.3), is obtained for the oscil-
lating cylinder when placed side by side with the clockwise rotation cylinder, 
case 3 and L/D = 1.5. On the other hand, the lowest mean drag coefficient (Cd 
= 1.0788), is obtained for the cylinder with counterclockwise rotation, located 
in the lower position in relation to oscillating cylinder in the upper position, 
with spacing between them of 1.5. Furthermore, it is observed that the rotation 
movement is more effective in reducing drag than the rotation-oscillation 
movement, for the studied frequency ratio. 
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1. Introduction 

Fluid dynamics is an area that has been studied for several decades. Due to its 
technological relevance and the wide range of interesting mathematical prob-
lems, it remains one of the most important areas for engineering. And, although 
the study of incompressible flows around bluff bodies is one of the oldest prob-
lems in fluid mechanics, it is still today one of the most important and challeng-
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ing. According to [1], such flows can result in phenomena, which help in under-
standing the physics of biological propulsion, in the interaction of wind and sea 
waves with offshore structures, and vortex-induced vibrations for better flow 
control.  

Thus, cylindrical structures immersed in the transverse flow such as in heat 
exchanger projects, nuclear reactor fuel rods, steel cables of suspension bridges, 
among others [2], flows around structures such as tall buildings, submarine pe-
riscopes, and industrial devices like cooling towers [3] are of the great interest in 
practice. Also, flow around circular cylinders [4] [5] [6] [7], as well as flow 
around rectangular cylinder [8], has been studied by different researchers, con-
sidering several aspects, in order to investigate the mechanisms behind these 
phenomena. According to [9], flow induced vibration, FIV, of the elastic bodies 
are not rare. They occur in a wide variety of physical systems, such as airplane 
wings, leaves of trees, bridges of long span, tall buildings, clarinet reeds or off-
shore structures to name a few. Vortex-induced vibration, VIV, is a type of FIV 
caused by the phenomenon of non-linear resonance. Due to the relevance of the 
subject, following this line of research, other scholars [6] [10] [11] [12], have also 
contributed to investigations with similar studies.  

On the other hand, flow around a group of cylinders, such as risers of offshore 
platforms, has been a challenge due to its inherent complexity. The interference 
between cylinders is responsible for several significant changes in flow characte-
ristics. According [13], such structures are subject to shear and oscillatory flows 
and, therefore, can experience flow-induced vibration, which could lead to 
structural failure or shutdown of industrial facilities under certain conditions. 
Therefore, it is worth studying such problems, to better understand the wake 
behavior when multiple cylinders are placed in a fluid stream. According [7], the 
motions induced by vortex can not only impact the mooring and riser systems, 
but also may cause collision between the floating structure and the nearby sup-
porting vessels. Consequently, vortex-induced motion became a critical problem 
during the design and optimization of floating structures with multiple columns.  

In view of the above, is reinforced the great relevance of vortex shedding 
phenomenon, in several practical situations. So, among the different objectives 
of researchers regarding the study of flow around bluff bodies or slender, has 
been the search for the suppression of this mechanism. Chehreh and Javadi [14], 
simulated a circular cylinder with attached swinging thin splitter plates as a pas-
sive method and analyzed the effect on the drag and lift forces, flow patterns and 
frequencies of vortex shedding. Another passive control method that has been 
explored is rotation and rotation-oscillation. Zheng and Wang [15] numerically 
investigated the oscillation of a two-dimensional circular cylinder attached with 
a short fairing device. They analyzed the mechanism behind the galloping oscil-
lation of the fairing device combining the cylinders movements and the corres-
ponding vorticity fields. Ping et al. [16] performed two-dimensional high-order 
spectral/hp simulations for a cylinder undergoing a sinusoidal rotary oscillation 
about its own axis. They further used the proper orthogonal decomposition 
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(POD) to characterize the spatially evolving nature of the forced wake as it un-
dergoes a transition from the near-wake two-layer shedding pattern to the far-wake 
Kármán-like shedding pattern. In the study [1] about three-dimensional turbu-
lent flow around a circular cylinder with sinusoidal rotation oscillation move-
ment, they verified that under forced control, 50% of drag reduction is obtained 
and the three-dimensionality of the flow is reduced in the lock-on regime. Ef-
fects of the oscillation and rotation of the cylinder on the vortex shedding in 
lock-on and non-lock-on regions, the mean drag and lift coefficients and the 
Strouhal number are investigated in detail [2]. Different flow patterns are ob-
served and classified [14]. They verified that in certain configurations, an in-phase 
vortex shedding pattern is dominant and the oscillatory nature of the lift force 
completely disappears. Given the relevance of the exposed subjects, the present 
work aims to contribute with one of the passive control methods, already men-
tioned. The combination of the rotation effect of one cylinder with the rota-
tion-oscillation effect of another cylinder, not yet investigated, is presented in 
this work. The combined effect of these movements is analyzed through the flow 
dynamics, as well as the relevant parameters such as the fluid dynamic coeffi-
cients and the pressure distribution around the cylinder surface. Different spac-
ing ratios between the cylinders, for equals oscillation amplitude, frequency ratio 
and specific rotation are considered in the simulations. The Immersed Boundary 
(IB) method [17], widely used by several researchers [4] [6] [13] [18] [19] [20] 
due to many advantages, such as ease of implementation, flow study on simple, 
complex and even deformable geometries without the need of remeshing, is also 
used in this study.  

This paper is divided in 5 items, which are: introduction, mathematical and 
numerical method, problem description, results and conclusions. In the intro-
duction, relevant works involving fluid dynamics, in the study of flow over 
moving bodies and works dealing with the methodology used in the present 
work are presented. In item 2, the mathematical formulation that involves the 
IB methodology, the numerical method and turbulence modeling are suc-
cinctly presented. In item 3, a description of the problem is made for the si-
mulations with two circular cylinders with different movements. In item 4, the 
results and discussions of the simulations with imposed motion—rotation and 
rotation-oscillation—are presented. In the item 5, the conclusions are presented, 
as well as the perspectives for future work. Finally, is presented the consulted 
bibliographic references. 

2. Mathematical and Numerical Method 
2.1. Basic Equations 

In the IB methodology, the governing equations for two-dimensional, viscous, 
incompressible and Newtonian flow are given by: 

( ) 1i j ji i
i

j i j j i

u u uu up f
t x x x x x

ν
ρ

 ∂  ∂∂ ∂∂ ∂
+ = − + + +   ∂ ∂ ∂ ∂ ∂ ∂   

.           (1) 
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where ρ  [Kg/m3] and ν  [m2/s] are the specific mass and the kinematic vis-
cosity, respectively. The other variables ui [m/s], p [N/m2], fi [N/m3] are respec-
tively, the i-th component of the velocity, the pressure and the i-th Eulerian 
force component. The last term of Equation (1) is obtained by the distribution of 
the components of the Lagrangian interfacial force vector, ( ),k tF x  [N], by 
Equation (3), using a distribution function [21]. 

( ) ( ) ( ) ( )2, ,ij k k k
k

t D t S= − ∆∑f x x x F x x .              (3) 

Being ( ), tf x  [N] the Eulerian force vector; x  [m] and kx  [m], the posi-
tion vectors of the Eulerian and Lagrangian points, respectively; S∆  [m] the 
average length of the arc over the Lagrangian points and ijD  [m−2] an interpo-
lation/distribution function, with properties of a Gaussian function. The 

( ),k tF x  term [22] is given by Equation (4) and the Gaussian function by Equ-
ation (5):  

( ) ( ) ( ) ( ) ( ), , , , ,k a k i k v k p kt t t t t= + + +F x F x F x F x F x .        (4) 

( )
( ) ( )

2

k i k j
ij k

g x x h g y y h
D

h

  − −   − =x x .            (5) 

with ( ) ( )1g r g r=  if 1r ≤ , ( ) ( )1
1 2
2

g r g r= − −  if 1 2r< < , ( ) 0g r =  

if 2r ≥  and ( ) ( )2
1 3 2 1 4 4 8g r r r r= − + + − . 

In Equation (4) aF  [N] is the acceleration force, iF  [N] the inertial force, 

vF  [N] the viscous force and pF  [N] the pressure force. The first represents 
the portion of the greatest influence on the total Lagrangian force calculation, 
can be interpreted as the portion that guarantees the non-slip condition. And, in 
Equation (5) r is the radius of influence of the distribution function which can 
be ( )k ix x h−  or ( )k jy y h−  depending on the direction in which the prop-
erty is distributed, h is the size of the Eulerian mesh and ( ),i jx y  are the coor-
dinates of the Eulerian points.  

For the numerical method, the Fractional Step method [23] is used with 
shifted meshes for the coupling between the pressure and velocity fields. It is a 
non-iterative method of pressure correction, where from the force, velocity and 
the pressure fields of the previous iteration, an initial velocity field is estimated. 
With these estimated velocity fields, the pressure correction field is calculated, 
through the solution of a linear system by the Modified Strongly Implicit proce-
dure (MSI) [24]. Then, the new velocity field is obtained, which satisfies the con-
tinuity equation. Only one iteration, in each time step, is necessary for the veloc-
ity fields obtained to satisfy the continuity, according to the established criterion, 
which in the present work is 1.0E-5 as maximum mass residue over all cells of 
the domain. 
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The spatial discretization is performed using the second-order centered finite 
difference scheme and the temporal discretization with the first-order Euler 
method, Equation (6), and second-order Adams-Bashforth, Equation (7), as fol-
low:  

( )
1

,
n n

n n n ni i
i j i i

u u
g u u P F

t

+ −
= − +

∆


.                   (6) 

( ) ( )
1

1 13 1, ,
2 2

n n
n n n n n ni i
i j i j i i

u u
g u u g u u P F

t

+
− −−

= − − +
∆



.            (7) 

where u  is the estimated velocity, t∆  is the time step, g corresponds to the 
advective and diffusive terms of the motion equation, n

iP  is the pressure gra-
dient and n

iF  the force field. 

2.2. Equations for Turbulence 

In our daily, there are many opportunities to observe turbulent flows, such as 
smoke from a chimney, water from a river or waterfall, or the buffeting of a 
strong wind. In these observations, we immediately see that the flow is unsteady, 
irregular, apparently random and chaotic, and certainly the motion of every ed-
dy or droplet is unpredictable [25]. The flow around bluff body, in this case a 
circular cylinder, even at moderate Reynolds number causes the generation and 
shedding of vortices. And, being the spatial discretization scheme, centered and 
without numerical diffusion, it is natural that the calculations from the simula-
tions become unstable. Hence the need to use of the turbulence model to ensure 
that the kinetic energy of the turbulence is carried by wave number or cutoff 
frequency. Furthermore, it is known that even for flows at moderate Reynolds 
number, it is not possible to directly solve all frequencies in turbulent flow. Thus, 
after applying the filtering and decomposition process [26] [27], and applying 
the definitions in Equations (1) and (2), the following equation is obtained:  

( ) *1i j ji i
ef i

j i j j i

u u uu up f
t x x x x x

ν
ρ

 ∂  ∂∂ ∂∂ ∂
+ = − + + +   ∂ ∂ ∂ ∂ ∂ ∂   

.         (8) 

where * 2 3p p kρ= +  and ef tν ν ν= +  being efν  the effective viscosity and 

tν  the turbulent viscosity given by ( )2 2t s ij ijC S Sν =  , where   is the charac-
teristic length, ijS  the strain rate and sC  the Smagorinsky constant equal 0.18. 

3. Problem Description 

In this work, the IB methodology is used to simulate two-dimensional incom-
pressible, isothermal and Newtonian flow around two moving circular cylinders 
arranged side by side. In Figure 1(a) the two cylinders represent the Lagrangian 
mesh and the calculation domain represents the Eulerian mesh. The location of 
the cylinders in relation to the input and output of the calculation domain is also 
schematized in the same figure.  

Figure 1(b) shows the uniform mesh region, that contains both cylinders, as well 
as their distance from the limits. The finer mesh in regions with high gradients,  
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(a)                                      (b) 

Figure 1. Illustrative scheme: (a) of the Eulerian and Lagrangian meshes; (b) distance 
from the cylinders surfaces to the limits of the uniform region. 
 
close to the cylinder captures the fields better, while for regions with low gra-
dients a coarser mesh is used. The use of a uniform mesh across calculation do-
main increases the computational cost unnecessarily.  

For the rotation-oscillation cylinder, the tangential velocity over the cylinder 
is given by: 

( )sin 2tg cV R A f t Rω= π= .                    (9) 

where A [m] is the oscillation amplitude, R [m] is the radius of the cylinder, fc 
[Hz] is the oscillation frequency of the cylinder or imposed frequency and t [s] is 
the physical time. This procedure is the same [28] and similar [1]. 

For the rotating cylinder, the positions of the Lagrangian points that make up 
the fluid-solid interface can be recalculated, according to the imposed angular 
velocity. Simulations can also be performed without recalculating the positions 
of the Lagrangian points. In this case, the rotation movement, clockwise (CR) or 
counterclockwise (CCR), is performed only with the projection of the tangential 
velocity, obtained through the imposed angular velocity, in the x and y compo-
nents of the velocity, in each Lagrangian point, as shown in Figure 2.  

For all simulations, the non-uniform grid of 600 × 300 points is used and the 
Reynolds number equal to 1000. The other important parameters are: oscillation 
amplitude (A) equal to 3 and frequency ratio ( r c of f f= ) equal to 0.5 for the 
rotation-oscillation cylinder, being of  the vortex shedding frequency for the 
stationary cylinder. For the rotating cylinder, the specific rotation (α) is 0.5. 

And the relationship between the tangential velocity ( tV ) of the cylinder and 
the free stream velocity, U∞  [m/s], is given by the specific rotation parameter 

( )R Uα ω ∞= . 
Table 1 shows the types of cylinder movement, upper (cylinder 1) and lower 

(cylinder 0), considering the 4 simulated cases.  

4. Results and Discussions 

The vortex shedding phenomenon is of great importance in several practical sit-
uations, as already mentioned. Considering that many existing structures are 
subject to movements, results of two-dimensional numerical simulations of the  
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Figure 2. Illustrative scheme of the tangential velocity projection and tangential and 
normal vectors, respectively. 
 
Table 1. Types of movement of each cylinder, for the 4 analyzed cases. 

  Movement type  

Case 1 
Cylinder 1 Rotation-oscillation (RO) 

 
Cylinder 0 Clockwise rotation (CR) 

Case 2 
Cylinder 1 Rotation-oscillation 

 
Cylinder 0 Counterclockwise rotation (CCR) 

Case 3 
Cylinder 1 Clockwise rotation 

 
Cylinder 0 Rotation-oscillation 

Case 4 
Cylinder 1 Counterclockwise rotation 

 
Cylinder 0 Rotation-oscillation 

 
combination of two types of movement, rotation and rotation-oscillation, are 
presented in this section. The combined effect of these movements is analyzed 
through the behavior of the flow dynamic (vorticity fields), the fluid dynamics 
coefficients and the pressure distribution around the cylinders.  

4.1. Vorticity Fields 

The vorticity fields, after established the flow regime, are shown from Figure 3(a) 
to Figure 3(d), for different spacing ratios (L/D) and two types of movements, 
as shown in Table 1. The lines correspond to the spacing ratios and the columns 
correspond to the 1st, 2nd, 3rd and 4th simulated cases, respectively from left to 
right. 

For L/D = 1.2 (Figure 3(a)), case 1, there is only one wake downstream of the 
two cylinders, after the flow regime has been established. The vortices are 
rounded, large and the cylinders behave as one. There is a 2S vortex shedding 
mode. For cases 2 and 3, the combination of movements produces a more sym-
metrical wake, while combinations 1 and 4 despite producing similar wakes, the 
longitudinal and transverse spacings are much larger than those obtained with  
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(a) 

 
(b) 

 

 

 
(c) 

 

 

 
(d) 

Figure 3. (a) Vorticity fields. L/D = 1.2 – cases 1, 2, 3 and 4 respectively. (b) L/D = 1.5. (c) 
L/D = 2.0, 2.5 and 3.0 respectively (top to bottom). (d) L/D = 3.5, 4.5 and 5.0 respectively 
(top to bottom). 
 
the combinations 2 and 3. Thus, it is clear that even keeping the same spacing 
ratio, the combination of movements interferes in the vortex shedding process. 
This interference is well evident when analyzing the evolution of the vortex 
shedding process for the initial times of simulation as shown in Figure 4. 

As the spacing ratio increases (Figure 3(b)), it is observed that the shear lay-
ers coming from the cylinders collide and, after the establishment of the stable 
flow regime, pairs of vortices of opposite signs are scattered in the wake (case 1). 
Changing the rotation direction of cylinder 0, from clockwise to counterclock-
wise, the shear layers coming from it suppress those originated by cylinder 1. It 
is noted downstream, that the transverse distance between the two shear layers 
of the lower cylinder is large, with a collision between the vortex generated by 
the upper shear layer of cylinder 0 and the vortex generated by the lower shear 
layer of cylinder 1. Far from the cylinders, there is only a single wake with large  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Evolution of the vortex shedding process for t < 20 s and L/D = 1.2. (a) Case 1. 
(b) Case 2. (c) Case 3 and (d) Case 4. 
 
transverse and longitudinal spacing between the vortices, beyond to presenting a 
certain symmetry. With the change of movements, cylinder 0 with rotation-osc- 
illation and cylinder 1 with clockwise rotation (case 3), the obtained wake is sim-
ilar to that of case 2, when far from the cylinders. Close to the cylinders there is 
no distance between the shear layers of cylinder 1, with rotation, due to the fact 
that the rotation is clockwise. Cylinder 1, once with counterclockwise rotation, 
case 4, the wake loses the symmetry observed for cases 2 and 3 and, in addition, 
the fusion between vortices of the same sign is observed. 

For L/D ≥ 2.0 (Figure 3(c)), the vortex shedding process by the two cylinders 
becomes independent, i.e., positive and negative vortices are formed by the two 
cylinders, regardless of the motion type. As the spacing between the cylinders 
increases, the amount of generated vortices also increases. It is also verified that 
the alternation in the type of movement, in combination with the position of one 
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cylinder in relation to another, influences in the vortex shedding time, even that 
the resulting wake after establishing the stable flow regime be similar. It is also 
worth to point out, that during the evolution in the vortex shedding process, 
occurs change in the format of the released vortices, and it may even stay as if 
were just a filament, beyond to the possibility of fusion between the vortices or 
not. 

For spacing ratio L/D ≥ 3.5 (Figure 3(d)), it is noted the 2C mode of vortex 
shedding, for the rotation-oscillation cylinder when in the upper position (cases 
1 and 2) and when in the lower position (cases 3 and 4). This mode, composed 
by vortices pairs of the same sign, was also observed [29]. On the other hand, the 
wake formed by the vortices released from the rotating cylinder has the appear-
ance of “quotes”. 

Figure 4(a) shows the evolution of the vortex shedding process for a simula-
tion time of less than 20 s, case 1, L/D = 1.2. It can be noted for the time of 2 s 
that the lower shear layer of the upper cylinder and the upper shear layer of the 
lower cylinder are repressed due to clockwise rotation (cylinder 0) and rota-
tion-oscillation (cylinder 1) movements, forming two vortices of small scale. Al-
so, cylinder 1 generates a negative vortex and cylinder 0 a positive vortex, both 
of large scale. As the time passes, it is observed that the positive vortex will 
growing and stretching while a second negative vortex is generated and released 
from cylinder 1, which will merge with the first negative vortex released, form-
ing only one. In this way, the process will continue over time and the wake will 
be formed by negative vortices originated from the upper shear layer of cylinder 
1 and by positive vortices originated from the lower shear layer of cylinder 0. 

The evolution of the vortex shedding process for case 2, in the first 20 s of the 
simulation is shown in Figure 4(b). In the first 6 s, the process is similar to the 
case 1. It is observed that the first negative vortex is released after 4s, while the 
first positive vortex is only released after 16 s. Due to the fact that cylinder 0 in 
this case rotates counterclockwise, it is noted that, unlike what happens in case 1, 
the second negative vortex released after 13 s does not merge with the first. This 
process continues and new vortices are formed, to compose the wake over time. 

For case 3, Figure 4(c), where cylinder 0 has rotation-oscillation movement 
and cylinder 1 clockwise rotation, the first positive vortex is released after 2 s 
and the first negative vortex after 3 s. The negative vortex becomes elongated 
and merges with another elongated vortex, forming only one after 8s. In the time 
of 4s, a second positive vortex is formed, and, as it develops still attached to the 
cylinder, another positive vortex, of smaller scale, is formed, for after the time of 
9 s they merge. 

Thus, it is noted that after 12 s of simulations there is only a pair of vortices in 
the wake. Others are formed and released and the process continues. 

In Figure 4(d), corresponding to case 4 and L/D = 1.2, cylinder 1 rotates 
counterclockwise while cylinder 0’s motion is the same as in case 3. The vortex 
shedding process is similar to that of case 3 in the first 6 s, but the negative vor-
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tices are more rounded. It is noted with the inversion in the direction of move-
ment of cylinder 1 that the union of the second positive vortex with the first pos-
itive of smaller scale, occurs after 11 s from the start of the simulation, while for 
case 3 it occurred for a lower time. 

It can be said, therefore, that although the vortex wake looks similar in all 
cases, Figure 3(a), the alternation of movements between the cylinders, alters 
the time in which the vortices are generated and released from the cylinder, as 
shown Figure 4(a) to Figure 4(d). It is verified that the first vortex is released in 
a shorter simulation time, when the lower cylinder has rotation-oscillation 
movement. It is also noted, for the spacing ratio equal to 1.2, that the cylinders 
movement prevents the formation and shedding of large-scale vortices from the 
lower and upper shear layers, of cylinders 1 and 0 respectively.  

Next, the influence of alternating movements on the pressure distribution 
around the cylinders is analyzed.  

4.2. Influence of Movements on Pressure Coefficients 

Figure 5(a) to Figure 5(d) show the mean values of the pressure coefficients 
around the cylinder, as a function of the angle, for the 4 cases shown in Table 1. 
The graphs on the left correspond to cylinder 0 (lower cylinder) and the right 
graphs correspond to cylinder 1 (upper cylinder). 

For case 1, Figure 5(a), the pressure distribution along the cylinder with clock-
wise rotation has similar behavior for the different spacing ratios. This unifor-
mity in the behavior becomes more pronounced for L/D greater than 2.0, situa-
tion in which the vortex wake of each cylinder becomes more independent. It is 
verified for all the spacing ratios, that at the stagnation point, 0θ =  (mini-
mum velocity), the local pressure is maximum, consequently, the pressure coef-
ficient is close to the unit value. As it runs through the cylinder from the front 
part ( 0θ = ), to the bottom ( 90θ = ) and then to the rear ( 180θ = ) and top of 
the cylinder ( 270θ = ), the mean pressure coefficient reduces up to a value of 
approximately—2.32, for 273θ = . It is noted a displacement for the right, of 
the points corresponding to the minimum pC , as the spacing ratio increases, 
going from θ  equal to 262.5˚ ( 1.38pC = − ) to θ  around 273˚ ( 2.32pC = − ). 
This behavior is coherent with the rotation direction of the cylinder. 

For the cylinder with rotation-oscillation movement, the pressure distribution 
around the cylinder, also presents similar behavior for L/D greater than 2. This 
implies that, as the spacing increases, the influence of a moving cylinder on the 
other cylinder also in motion, decreases. For L/D < 2, the pressure distribution is 
more irregular, whereas, as the influence of spacing decreases, the pressure dis-
tribution becomes more regular, highlighting two points of lower pressure, one 
for 108.75θ =  ( 2.19pC = − ) and another for 255θ =  ( 2.45pC = − ). The 
lowest average pressure coefficient is verified for L/D = 1.5, being 172.5θ =  
and 2.58pC = − .  

For case 2, Figure 5(b), in which the movement type of the upper cylinder is  
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Figure 5. (a) Distribution of the mean pressure coefficient versus angle, case 1. (b) Case 2. 
(c) Case 3. (d) Case 4. 
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maintained and only the movement of the lower cylinder is changed, from 
clockwise to counterclockwise rotation, the pressure distribution along the cy-
linder presented behavior coherent with the types of movements. For the two 
cases analyzed so far, the minimum velocity point ( 0θ = ) is the same, therefore, 

1.0pC = . Once the lower cylinder rotates counterclockwise, it is coherent that 
the minimum value for the average pressure coefficient ( 2.35pC = − ), corres-
ponds to the bottom of the cylinder, 85θ = , being contrary to the observed in 
case 1. With the increase in the spacing between the cylinders, there is oscillation 
in relation to the points of occurrence of low pressure values. Thus being, there 
is an increase in the coefficient when the spacing goes from L/D = 1.2 ( 75θ =  
and 2.2pC = − ) to L/D = 1.5 ( 74.85θ =  and 1.92pC = − ), followed by a re-
duction when L/D = 2.0 ( 76.5θ = , 2.1pC = − ) and L/D = 2.5 ( 82.875θ =  
and 2.24pC = − ). For the other spacings there are no significant oscillations. 

Considering the cylinder with rotation-oscillation movement, the greatest dif-
ferences in the pressure distribution around the cylinder are also verified for 
spacing ratios lower than 2.5. For larger spacings, the behavior tends to stabilize, 
due to reduction of the influence between the cylinders. The smallest mean value 
of the coefficient is obtained for L/D = 1.2 ( 2.76pC = − ), followed by its increase 
with the increase of the spacing ratio and keeping the value approximately the 
same for L/D ≥ 2.5. Thus, the influence of the direction of rotation, clockwise 
(CR) or counterclockwise (CCR), in the pressure distribution along the cylinder 
with rotation-oscillation (RO) movement is confirmed. 

Changing the position of the cylinder with RO motion, Figure 5(c) shows the 
pressure distribution along the cylinders surface for case 3. 

It is noted that the interference between the cylinders for small spacing ratios 
is quite significant, so that the pressure distribution for cylinder 0 with RO is 
similar to that obtained for cylinder 1 with CR. 

In both cylinders there is a reduction in the mean value of the pressure coeffi-
cient, with the increase in the spacing ratio from 1.2 to 1.5, of 11.5% and 18.2%, 
for cylinders 0 and 1, respectively. It is worth to point out that for the cylinder 
with RO movement, the minimum coefficient reduced from −2.96 ( 177.3θ =  
and L/D = 1.2) to −3.3 ( 206.85θ =  and L/D = 1.5), while for cylinder 1 the re-
duction is from −2.2 ( 286.5θ =  and L/D = 1.2) to −2.6 ( 282.63θ =  and L/D 
= 1.5).  

Figure 5(d) shows the mean pressure distribution for case 4, in which cylind-
er 0 maintained the RO movement, while cylinder 1 changed to CCR. 

For this combination of movements, a more irregular behavior is also noted 
for low L/D values, keeping the characteristic behavior for larger spacings. Such 
irregularity is due to the greater interaction between the cylinders due to their 
proximity. For cylinder 0, the lowest mean pressure coefficient is obtained for 
L/D = 1.5 and θ = 210˚, being equal to −2.88. And, for cylinder 1, the smallest 
average coefficient is obtained for spacing ratios greater than 2.5, whose beha-
vior remains approximately the same, being equal to −2.31 for θ = 88.165˚.  
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4.3. Influence of Movements on Fluid Dynamics Coefficients 

Figure 6 shows the mean values of the drag coefficients for cylinders 0 and 1, 
considering the 4 analyzed cases. For cylinder 0 with CR (case 1), it is noted that 
the mean values of Cd decrease with the increase of the spacing ratio up to L/D = 
2.0 and after oscillate around an average value of 1.6079 for the other spacings. 
In counterpart, when in CCR (case 2), the drag decreases slightly from L/D = 1.2 
to 1.5 and then increases tending to the values obtained with the CR, but keeping 
smaller. It is thus verified, that the rotation movement has a more significant in-
fluence on drag for small spacing ratios. As the spacing increases, regardless of 
the rotation direction, this influence becomes practically negligible. On the other 
hand, cylinder 0, when in RO movement, presents mean values of Cd much 
higher than those obtained when in rotation movement. This implies that drag 
reduction can occur with greater or lesser efficiency, depending on the type of 
movement. 

Considering cylinder 1, high drag values are also noted when in RO move-
ment, with similar behavior to cylinder 0 with the same type of movement. It is 
interesting to point out that the behavior of the drag coefficient for cylinder 1 
with CCR is similar to that observed for cylinder 0 with CR.  

And, the behavior of cylinder 1 with CR is similar to that of cylinder 0 with 
CCR, showing divergence only for L/D equal to 1.5. Such behaviors lead to con-
clude that not only the type of movement influences the drag, as also the posi-
tion of the cylinder. 

In view of the above, it can be said that the rotation movement is more effi-
cient in reducing drag than the rotation-oscillation movement, considering the 
frequency ratio studied (fr = 0.5). However, the oscillating cylinder helps to re-
duce the drag of the rotating cylinder, depending on the direction of its move-
ment and its position. This is confirmed when analyzing cylinders 0 and 1, both 
with clockwise rotation, but with opposite positions, in relation to oscillating cy-
linder. Note that when the cylinder is in the upper position, the drag is less than 
when it is in the lower position. And, analyzing cylinders 0 and 1, both with 
counterclockwise rotation, the drag is smaller when it is placed in the lower po-
sition in relation to the oscillating cylinder. 

In counterpart, the RO cylinder, for L/D ≤ 1.5, presented lower drag when in 
the upper position in relation to the cylinder with CCR. With increasing spacing 
ratio, the mean values of Cd are approximately the same, independently of the 
oscillating cylinder position relative to the rotating cylinder. 

The mean values of the lift coefficient are shown in Figure 7. A similar beha-
vior is observed in all analyzed cases. However, comparing cases 1 and 2, in 
which the direction of rotation is opposite, the average coefficients are positive 
for the clockwise rotation, with the exception of the smallest spacing ratio, and 
present negative values for the counterclockwise rotation, what is coherent. The 
same behavior is also verified for cylinder 1, cases 3 and 4. 

As already commented, the cylinder position, if lower or upper, influences the  
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Figure 6. Mean values of drag coefficients as a function of L/D. 
 

 
Figure 7. Mean values of the lift coefficients as a function of L/D. 
 
behavior of the fluid dynamics coefficients. For small spacing ratios, the average 
values of the lift coefficient increase tending to a more constant value, when the 
cylinder is in the lower position, and presents opposite behavior when in the 
upper position. 

In this way, the greatest influence of one cylinder over the other is verified for 
small spacings. As the spacing increases, this influence decreases. This is due to 
the fact that the vortices wakes become more and more independent. It is also 
interesting to point out, that the cylinder with rotation-oscillation movement, 
when in the upper position (cylinder 1), which correspond to cases 1 and 2, 
present positive mean coefficients for all spacing ratios. On the other hand, con-
sidering the same type of movement, but with the cylinder in the lower position 
(cylinder 0), which refer to cases 3 and 4, the average values of the lift coefficient 
are negative. Such behaviors are due to the influence of the rotating cylinder. 
Depending on the combination of movements, as well as the positions of the cy-
linders, the sign of the lift coefficient of the oscillating cylinder may or may not 
be the same as that of the rotating cylinder. The obtained results show that the 
combination of RO (cylinder 1) with CCR (cylinder 0) and, the combination of 
RO (cylinder 0) with the CR (cylinder 1), results mean lift coefficients of oppo-
site signs to those of the respective rotating cylinders. On the other hand, com-
bining RO (cylinder 1) with CR (cylinder 0) and, RO (cylinder 0) with CCR (cy-
linder 1), results in coefficients of the same signs to those of the respective ro-
tating cylinders. 
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It is still verified, that the mean lift coefficients ( C


) of the oscillating cylinder, 
when in the upper position in relation to the rotating cylinder (cases 1 and 2), 
decrease with the increase of the spacing ratio. On the other hand, when in the 
lower position (case 4), the values of C



 increase with increasing spacing and, 
considering case 3, the values oscillate to L/D ≤ 2.0 and then increase with spac-
ing. Already the cylinder with clockwise rotation, when in the lower position 
(case 1), the values of C



 increase with the increase of L/D and decrease when 
in the upper position (case 3). And, the cylinder with the counterclockwise rota-
tion, presents a decrease of C



 with the increase of L/D for case 4 and, for case 
2, the values oscillate for L/D equal to 2.5 and 3.0 and then increase. Finally, it is 
concluded that case 3 is the combination that resulted greater lift.  

5. Conclusions 

In this work, the IB methodology is used to simulate flow around two moving 
circular cylinders, arranged side by side, for Re = 1000, A = 3, α = 0.5, fr = 0.5 
and different L/D. The most important conclusions of the numerical simulations 
are summarized as follow: 

1) For small spacing ratios, the two cylinders behave as a single bluff body, 
regardless of movement type. This is proven by the 2S vortex shedding pattern. 
However, it is important to point out that the alternation in the combination of 
movements influences the longitudinal and transverse spacing of the vortices 
and the time in which the vortices are generated and released from the cylinders. 

2) The alternating motions (Table 1) have more significant effect on the 
pressure distribution around the cylinder surface when they are closer to each 
other. With distancing between them, the pressure distribution acquires the 
characteristic behavior of each movement. The lowest average pressure coeffi-
cient (Cp = −3.3) is obtained for the oscillating cylinder placed side by side with 
the clockwise rotation cylinder, case 3 and L/D = 1.5. 

3) The rotation influences the drag more significantly for small spacing ratios, 
being practically negligible such influence as the spacing increases. Furthermore, 
the rotating cylinder when in the lower position, is more effective in reducing 
drag when rotating counterclockwise than clockwise. On the other hand, when 
located in the upper position, the drag reduction is greater when it rotates 
clockwise, due to the fact that the shear layers coming from the cylinder going 
toward those originated by the oscillating cylinder. 

4) The oscillating cylinder, may presents average lift coefficient, positive or 
negative, depending on its position relative to the rotating cylinder.  

5) The lowest lift coefficients values are obtained for the cylinder with CCR 
(case 2).  

Another work is being done, in which the influence of motion and the posi-
tion of one cylinder relative to the other is being investigated through the veloc-
ity and pressure fields and the power spectrum of the lift coefficient signal. In 
addition, different frequency ratios will also be analyzed. As future perspectives 
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can be mentioned: 
● Simulate cases of fluid-structure interaction, increasing the free stream veloc-

ity with oscillating cylinder and also the same analysis with decreasing veloc-
ity; 

● Perform three-dimensional simulations; 
● Simulate other types of flows, such as confined and non-isothermal flows, 

among others. 
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