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Abstract 
Aspects of the general Vlasov theory are examined separately as applied to a 
thin-walled channel section cantilever beam under free-end end loading. In 
particular, the flexural bending and shear that arise under transverse shear 
and axial torsional loading are each considered theoretically. These analyses 
involve the location of the shear centre at which transverse shear forces when 
applied do not produce torsion. This centre, when taken to be coincident with 
the centre of twist implies an equivalent reciprocal behaviour. That is, an ax-
ial torsion applied concentric with the shear centre will twist but not bend the 
beam. The respective bending and shear stress conversions are derived for 
each action applied to three aluminium alloy extruded channel sections 
mounted as cantilevers with a horizontal principal axis of symmetry. Bending 
and shear are considered more generally for other thin-walled sections when 
the transverse loading axes at the shear centre are not parallel to the section = 
s centroidal axes of principal second moments of area. The fixing at one end 
of the cantilever modifies the St Venant free angular twist and the free warp-
ing displacement. It is shown from the Wagner-Kappus torsion theory how 
the end constrained warping generates an axial stress distribution that varies 
with the length and across the cross-section for an axial torsion applied to the 
shear centre. It should be mentioned here for wider applications and valida-
tion of the Vlasov theory that attendant papers are to consider in detail 
bending and torsional loadings applied to other axes through each of the cen-
troid and the web centre. Therein, both bending and twisting arise from 
transverse shear and axial torsion applied to each position being displaced 
from the shear centre. Here, the influence of the axis position upon the net 
axial and shear stress distributions is to be established. That is, the net axial 
stress from axial torsional loading is identified with the sum of axial stress 
due to bending and axial stress arising from constrained warping displace-

How to cite this paper: Rees, D.W.A. and 
Alsheikh, A.M.S. (2024) Theory of Flexural 
Shear, Bending and Torsion for a Thin- 
Walled Beam of Open Section. World 
Journal of Mechanics, 14, 23-53. 
https://doi.org/10.4236/wjm.2024.143003 
 
Received: November 10, 2023 
Accepted: March 26, 2024 
Published: March 29, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
Open Access

https://www.scirp.org/journal/wjm
https://doi.org/10.4236/wjm.2024.143003
https://www.scirp.org/
https://doi.org/10.4236/wjm.2024.143003
http://creativecommons.org/licenses/by/4.0/


D. W. A. Rees, A. M. S. Alsheikh 
 

 

DOI: 10.4236/wjm.2024.143003 24 World Journal of Mechanics 
 

ments at the fixing. The net shear stress distribution overlays the distributions 
from axial torsion and that from flexural shear under transverse loading. Both 
arise when transverse forces are displaced from the shear centre. 
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1. Introduction 

In a minor departure from the Vlasov theory [1], here the co-ordinates z refers 
to length while x and y lie in the cross section with their origin at the centroid. 
(Vlasov replaces z with x, and x with z). Many extruded beam cross-sections are 
symmetrical on either side of the vertical y-axis upon which the centroid will lie. 
Consequently, when the line of action of a vertical shear force is aligned with the 
y-axis of these sections, there will be no twisting effect. That is not to say, gener-
ally, that when the force passes through the centroid that longitudinal twisting is 
avoided. For a section that is not symmetrical about a vertical y-axis, as with the 
vertically mounted channel considered here, then the shear force must be dis-
placed to pass through a point called the shear centre if the beam is not to twist 
[2] [3]. This ensures that the shear stress distribution over a section is statically 
equivalent to the applied shear force, i.e. the distribution has a zero moment 
about any point in the line of the shear force. It follows that twisting can be 
avoided in a non-uniform beam section when the transverse shear forces applied 
over the length lie on a longitudinal flexural axis that is the locus of the shear 
centres for all cross-sections. That locus is a straight line for a channel cross- 
section uniform in the length. The shear centre is a property of the section not 
generally coincident with the centroid [4]. The shear centre of a doubly or a 
multiply symmetric section does lie at the centroid and here the flexural axis is 
coincident with the centroidal axis. The shear centre of a singly symmetrical 
channel section lies on its x-axis of symmetry and the flexural axis will lie in the 
plane of symmetry. It is often obvious from inspection where the shear centre is 
located. It will lie at the intersection of the limbs in tee, angle and crucifix sec-
tions as this is the point of intersection between the force resultants of the shear 
stress distributions for those limbs. 

In practice, transverse shear forces are not always applied concurrent with the 
shear centre E (see Figure 1(a)). Shear stresses due to torsion from the offset 
loading as well as flexural shear both appear (see Figure 1(b) and Figure 1(c)). 

The static equivalence between Figure 1(a) and the sum of Figure 1(b) and 
Figure 1(c) enables the net shear stress to be found by adding the separate ef-
fects of pure flexural shear and pure torsion. 
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Figure 1. Superposition of pure flexural shear and torsion. 
 

St Venant’s theory [4] [5] provides the shear stress due to torsion for a 
thin-walled, open section when the beam ends that bear axial torsion are uncon-
strained. In the case of I, T and U sections it will be seen that the contribution to 
the net torque T from the individual, thin straight limbs (the web and the 
flanges) may be added by that theory. In what follows to find the shear stress 
across the thickness in Figure 1(c), the applied torque arising from transverse 
perpendicular forces Fx and Fy acting at the centroid G is given as: T = Fxey + Fyex 
where (ex, ey) are the co-ordinates of the shear centre E. 

2. Shear Flow in Thin-Walled Sections 

The following discussion illustrates how the shear flow distribution and the po-
sition of the shear centre may be found in the case of open thin-walled sections. 
Consider a beam with an open section of arbitrary shape. The wall thickness 
may vary but must remain thin compared to the other dimensions (see Figure 
2(a)). Centroidal axes x and y pass through the centroid G for which the direc-
tions of the transverse shear forces Fx and Fy are aligned. If the cross-section is 
not to twist, both shear forces must act through the shear centre E which is dis-
placed from G. Let Fx and Fy act at E in the negative x and y directions as shown, 
so that positive hogging moments Mx and My appear in the first quadrant of (x, 
y), In a beam with both ends supported the transverse point forces applied to the 
span and their accompanying bending moments will vary with beam length. Re-
call here, the construction of shear force and bending moment diagrams for 
these variations [6]. Within the plane of the thin wall cross-section there will be 
a component of shear stress τzs parallel to the mid-wall centre-line co-ordinate s, 
where the material is assumed to be concentrated, and one normal to this 
mid-line, τzn where n is perpendicular to s. Because τzn is zero at the free edges, 
its variation with t can be ignored. Also, τzs is assumed to be uniform between 
the edges of a thin section but will vary with the perimeter length s. Here a con-
stant shear flow q = tτzs will account for variations in τzs with a varying t around 
the section in the positive s-direction shown. This applies to transverse shear 
force but note that shear stress due to torsion of an open tube varies linearly  
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(a)                                    (b) 

Figure 2. Shear flow in a thin-walled open section. 
 
through the thickness [6] where a zero average shear stress is referred to the mid 
centre line. 

Acting in the z-direction there is a mid-line complementary shear flow, q = 
tτsz and a bending stress σ due to the bending moment. The variation in these 
actions across an element δs × δz of the wall is shown in Figure 2(b). When any 
slight variation in t with δs is ignored, the equilibrium equation for the 
z-direction becomes 

( ) ( ) ( ) ( ) 0z z s t s t q q s s z q zσ σ δ δ σ δ δ δ δ+ ∂ ∂ × − × − + ∂ ∂ + =        

This simplifies to the following equilibrium equation between q and σ when 
they increase with positive s and z: 

 q s t zσ∂ ∂ = ∂ ∂  (1) 

Since both Mx and My are positive (hogging) moments within first quadrant 
(x, y) in Figure 2(a), the longitudinal bending stress is 

 x x y yM y I M x Iσ = +  (2) 

Substituting Equation (2) into Equation (1) and integrating for the shear flow 
q 

 ( ) ( )( ) ( ) ( )( )1 d d d 1 d d dx x y yq I M z yt s I M z xt s= +∫ ∫  (3) 

The hogging moments for any section at a distance z from the origin in Fig-
ure 2(a) are Mx = Fyz and My = Fxz. Hence the transverse shear forces follow: 

 d d and d dy x x yF M z F M z= =  (4a, b) 

That is, Fx and Fy are positive shear forces associated with the hogging mo-
ments. Equations (4a, b) will connect the forces to the moments for any section 
distance z along the beam. Substituting Equations (4a, b) into Equation (3) gives, 

 ( ) ( )y x x x y yq F I D F I D= +  (5) 

where dxD yt s= ∫  and dyD xt s= ∫  are the respective first moments of the in-
cremental area t δs about the x and y axes in Figure 2(a). Equation (5) will give a 
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positive q for the negative Fx and Fy directions shown and with s measured 
anti-clockwise from the free surface. 

Equation (5) is not restricted to positive forces. The sign of q will indicate its 
true direction relative to the chosen direction for s. 

2.1. Principal Axes 

This far we have specified that x and y are centroidal axes lying parallel to the 
shear forces Fx and Fy. Equation (5) applies when x and y coincide with the prin-
cipal axes for the section, i.e. when Ix and Iy are the principal second moments of 
area for the asymmetric section, as shown in Figure 3(a). 

In contrast, for the non-symmetric cross-section in Figure 3(b), shear forces 
Fx and Fy, applied at E, are not aligned with its principal directions u and v. 
Equations (2) and (5) become 
 x x y xM y I M x Iσ ′ ′= +  (6a) 

 ( ) ( )y x x x y yq F I D F I D′ ′= +  (6b) 

where equivalent shear force components xF ′  and yF ′  may be derived from 
the equivalent moments xM ′  and yM ′  employed with the asymmetric bending 
of beams [6]. Equivalent moments refer co-ordinates x, y to the centroid G for 
which non-principal second moments Ix, Iy and Ixy apply. These equivalent quan-
tities offset the need to calculate principal second moments for axes u and v and 
their respective orientations [7].  

 ( ) ( )21x x y xy y xy x yM M M I I I I I  ′ = − −     (7a) 

 ( ) ( )21y y x xy x xy x yM M M I I I I I  ′ = − −     (7b) 

Applying the derivative relationships between F and M in Equations (4a, b) to 
Equations ((7a), (7b)) give: 

 ( ) ( )21y y x xy y xy x yF F F I I I I I  ′ = − −     (8a) 

 ( ) ( )21x x y xy x xy x yF F F I I I I I  ′ = − −     (8b) 

 

 

Figure 3. Principal axes (a) coincident and (b) not coincident with shear force directions. 
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2.2. Shear Centre 

To find the position of the shear centre E in Figure 3(b), the following principle 
applies to any point O in the section: the moment due to shear flow q will be 
equivalent to the resultant moment produced by shear forces Fx and Fy acting at 
E. For example, taking moments about a point O on the x-axis in Figure 3(b), 
the resultant moment is 

 dy x x yF e F e qR s− = ∫  (9a) 

where R is the perpendicular distance of q from O. Equation (9a) alone cannot 
locate the shear centre position E (ex, ey) for an asymmetric section. However, 
the moment due to one of the forces in Equation (9a) can be eliminated when O 
is chosen to lie along either force line. This method is adopted to find the shear 
centre for a thin section that is symmetrical about either axis x or y. For exam-
ple, in Figure 3(a) we need only apply a single vertical force Fy at E to find the 
position ex of E from O. That is, for Figure 3(a), the applied force Fx is removed, 
modifying Equation (9a) to 

 dy xF e q R s′= ∫  (9b) 

where q′  is the shear flow under Fy acting alone. Equations ((9a), (b)) may then 
be solved for ex and ey. 

2.3. Singly Symmetrical Sections 

Shear flow analysis is simplified when a section is symmetric about either of its 
centroidal axes x or y. This means that x and y are principal axes and that both 
the centroid G and the shear centre E will lie along the axis of symmetry (the 
x-axis in Figure 3(a)). In the case of a symmetrical section under a single shear 
force Fx (or Fy), one or other term is omitted from Equation (5). For example, if 
in Figure 3(a), Fx is absent then the shear flow equation becomes 

 ( )x y x xq F I D=  (10a) 

With x the symmetry axis, the shear centre E (ex, 0) is found from taking mo-
ments at O: 

 dy xF e qR s= ∫  (10b) 

Here Equation (10b) applies irrespective of whether Fx is present or not.  

2.4. Summary of Flexural Shear 

If the beam of thin-walled section is not to twist under transverse force compo-
nents Fx and Fy they are to be applied to the shear centre of that section whether 
it be open or closed. The shear centre will lie along or at the intersection between 
the section’s axes of symmetry where they exist. The shear flow q, as found from 
Equation (5), will be seen to vary with the dimension s taken around the section 
perimeter. The origin for s, where q = 0, is taken to lie at a free surface in an 
open section and, where it exists, at the intersection between the thin wall and an 
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axis of symmetry for a closed section. The analysis proceeds with thin open sec-
tions generally and axially-symmetric channel sections in particular.  

3. Shear Flow in Thin-Walled Open Sections 

An interesting feature of shear stress arising from transverse shear forces applied 
to beams is the concept of shear flow within open cross-sections having thin 
walls. It has been seen generally that shear flow is the product of the shear stress 
and the wall thickness q = τt. In Equation (10a), under a single transverse force 
Fy, the shear flow qx is found from  

 x y x xq F D I=  (11a) 

where Dx and Ix are, respectively, the first and second moment of the section area 
about the x-axis. Both moments of area derive from integrating an element of 
the wall area tδs about the x-axis: 

 dx s
D yt s= ∫  and 2 dx s

I y t s= ∫  (11b, c) 

Within Equations (11b, c), the integration for Ix must extend over the whole 
cross section but that for Dx applies only to the area that contains s. If the beam 
is not to twist one must identify Fy with a vertical force applied at the shear cen-
tre of an open section. Here the shear centre will lie along or at the intersection 
between the section’s axes of symmetry. If the shear centre position is not obvi-
ous it will need to be calculated as in the examples to follows. The shear flow q, 
as found from Equation (11a), will be seen to vary with the dimension s taken 
around the section perimeter. Conveniently, the origin for s is taken to lie at a 
free surface in an open section where qx = 0. 

Where a second, horizontal shear force Fx acts at the shear centre Equation (5) 
shows that the respective shear flows may be added from the separate applica-
tions of forces Fx and Fy. Adopting this principle of superposition, the net shear 
flow is given in full: 

 ( ) ( )y x x x y yq F D I F D I= +  (12a) 

where in addition to Equations (11b, c) and by analogy 

 dy s
D xt s= ∫  and 2 dy s

I x t s= ∫  (12b, c) 

The derivation of Equations (11a) and (12a) assumes that x and y are the sec-
tion’s principal axes and that, in the present convention, shear forces Fx and Fy 
are applied in opposite directions to positive x and y. 

3.1. Open Channel 

In the channel section shown in Figure 4(a). The vertical shear force is placed at 
the shear centre E, whose position ex is to be found along the x-axis of symmetry. 
Also, to be established here are expressions for the shear flow qx-distributions 
around the section’s web and flanges, shown in Figure 4(b). 

Because x is a symmetry axis, it will contain both G and E but they are not 
coincident for a singly symmetric channel section. Here centroidal axes x and y  
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Figure 4. Shear flow in a uniformly thin channel with vertical force at E. 
 
at G are the section’s principal axes and therefore Equation (11a) will provide 
the shear flow directly. The position X ′  of its centroid G is found from taking 
first moments of the three rectangular areas about the web’s vertical edge BC: 

( ) ( ) ( )2 2 2 2t dt at a a d tX ′+ = +  

from which 

 ( ) ( )1 2X a d a da′ +=     (13a) 

which is an acceptable approximation when t a  for a thin wall. With the 
origin of the axes x and y at the centroid G, as shown, Ix is the only second mo-
ment of area required: 

 ( ) ( ) ( )( )23 3 22 12 2 12 2 6xI at at d td td a d  + ≈ = + +  (13b) 

Taking the origin for s at A, the shear flow in the top flange AB becomes: 

 ( ) ( ) ( ) ( )d 2 d 6AB y x y x ys s
q F I yt s F I d t s F s d a d= = = +  ∫ ∫  (14) 

Equation (14) gives a linear distribution having its maximum at B, i.e. qB for s 
= a (as shown in Figure 4(b)). The qB-value reappears in the shear flow integral 
for web BC as follows: 

 ( ) ( ) ( ) ( )d 2 d 6BC y x B y x ys s
q F I yt s q F I d s t s F a d a d= + = − + +  ∫ ∫  (15a) 

where the origin for s is at B. Integrating Equation (15a) and substitution for Ix 
gives: 

 ( ) ( ) ( ) ( )d 2 d 6BC y x B y x ys s
q F I yt s q F I d s t s F a dt a d= + = − + +  ∫ ∫ (15b) 

Equation (15b) describes the parabolic distribution shown in Figure 4(b), this 
revealing that the maximum shear flow occurs at the neutral x-axis (s = d/2): 

 ( ) ( ) ( ) ( )4 4 3 1 4 2 1 6max y yq F a d a d F a d d a d= + + = + +  (15c) 

Equation (15c) provides a maximum shear stress τmax = qmax/t, which is iden-
tical to that which would be found at the web-centre for a uniform I-beam with 
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flange lengths a and web depth d. However, the corresponding shear flow analy-
ses must refer to the condition that Fy is applied at the shear centre E (see Figure 
4(a)). While E coincides with the centroid for an I-section, it lies outside the 
channel section, distance e from the web as shown.  

The requirement that Fy does not twist the section is met when the corre-
sponding torque applied to the section T = Fyex is the resultant of the net torque 
due to the q distributions in each limb. Such a static equivalence condition must 
apply to any point around the perimeter. Hence by taking the corner point C, for 
example, only the shear flow in AB is influential in providing the static equiva-
lence equation. That is, taking moments at C: 

 
0

d 0
a

C y x ABT F e d q sΣ = − =∫  (16a) 

and substituting qAB from Equation (14), xe a  is found from Equation (16a) as: 

0
d

a
y x ABF e d q s= ∫  

 ( ) ( )3 1 6xe a a d a d∴ = +  (16b) 

If Fy is not applied at E then shear stress arises from both shear force and tor-
sion. Such a combination arises when Fy acts vertically at the centroid G or along 
the web (say). 

Conveniently, shear and torsion may be separated and superimposed to pro-
vide the net effect upon shear stress, twist and warping. In this paper the tor-
sional effects are considered and in a second paper [8] offset shear force effects 
are examined for channel sections in particular. The example given above shows 
that the shear flow must be considered initially in order to locate the required 
position of the shear centre to enable the superposition mentioned. A further 
example follows below to illustrate how the shear flow distribution provides the 
location of E in a section with curvature. 

3.2. Semi-Circular Shell 

Here it is required to determine the shear flow distribution and the position of 
the shear centre for a thin-walled semi-circular section. Transverse loading is 
applied through the shear centre E by shear forces Fx and Fy lying parallel to the 
principal axes x and y as shown in Figure 5(a). 

Firstly, the position X  of the centroid G is found by taking the first mo-
ments of area about the Y-axis shown. Let s and δs subtend angles θ and δθ at O 
in Figure 5(a). The first moment of area theorem is applied as follows with δs = 
Rδθ 

dAX x A= ∫  

( ) ( )
0

sin dRt R RtX θ θ
π

π = ∫  

 ( )
0

sin d 2R RX θ θ
π

= π = π∫  (17a) 

Both Ix and I y are required in this example: 
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Figure 5. Semi-circular section under transverse shear forces applied at E. 
 

( ) ( )22 32
0

d 2 cos d 2XI y A R Rt R tθ θ
π

= = = π∫ ∫   

 ( ) ( )22 32
0

d 2 sin d 2YI x A R Rt R tθ θ
π

= = = π∫ ∫  (17b) 

and, from Equation (1.17a), within the parallel axis theorem: 
2

y YI I XA= −  

 ( )( ) ( )23 32 22 4yI R t Rt R R t= π − π π = π − π  (17c) 

The first moment integrals within Equation (5) are 

( )( ) 2 2
0 0 0

d cos d cos d sinxD ty s t R R R t R t
θθ θ

θ θ θ θ θ = = = =  ∫ ∫ ∫   

 2 sinxD R t θ=  (18a) 

( )( ) 2 2
0 0

d 2 sin d 2 cosyD tx s t R R R tR R t
θθ

θ θ θ θ = = π − = π + ∫ ∫   

 ( )2 2 cos 1yD R t θ θ= π + −  (18b) 

Here, both Fx and Fy are reckoned positive as acting in the negative x- and 
y-directions. 

Substituting Equations ((17b), (18c)) and ((18a), (18b)) into Equation (5) re-
sults in the following expression of q in terms of θ: 

 ( ) ( ) ( )22 sin 2 2 cos 1 8y xq F R F Rθ θ θ= π + π π + − π −  (19a) 

which is positive for the direction of s shown. When Fx = Fy = F, the shear flow 
varies around the perimeter as in Figure 5(b). This shear flow distribution is 
statically equivalent to the two applied shear forces, provided that they act 
through the shear centre E. In this case E will lie along the x-axis, say distance ex 
from O. By taking moments about O, it is only necessary to consider moment 
equivalence between Fy and the component of shear flow due to Fy . That is from 
Equation (19a): 
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 ( )2 sinyq F R θ= π  (19b) 

Applying the integral in Equation (10b) to the perimeter path 

( )d 2 sin dy x yF e qR s F R R sθ= = π∫ ∫  

Substituting δs = Rδθ, into Equation (19b), the integral is evaluated for ex 
within limits: 0 ≤ θ ≤ π (rad): 

( ) ( )[ ]2
00 0

d 2 sin d 2 cos 4y x y y yF e R q R F R F R Fθ θ θ θ
π π π= = π = − π = π∫ ∫  

 4xe R∴ = π  (19c) 

Equation (19c) locates the position of the shear centre horizontally from the 
centre O of the semi-circle, as shown in Figure 5(a) and Figure 5(b). 

4. Wagner-Kappus Torsion of Thin-Walled, Open Sections 

The forgoing examples provide the analyses required for locating the position of 
the shear centre for a thin-walled, open cross-section beam subjected to trans-
verse forces. Knowing the position of the shear centre is equally important for 
when torsion is applied to an open section cantilever beam about a longitudinal 
axis.  

4.1. Centre of Twist 

Of all the axes about which torsion may be applied to the section one above all 
others underlies the analyses of the deformation that torsion produces. Consider 
a thin-walled open tube subjected to an axial torque about a longitudinal z–axis 
passing through the section’s centre of twist. The latter exists as a point in the 
cross-section when there is no resultant torque about other longitudinal axes ly-
ing within the open-section’s plane in Figure 6(a). The centre of twist will not 
coincide with the centroid of the cross-section in general. However, the analysis 
of an open tube is simplified by knowing that the centre of twist coincides with 
the shear centre for the section [5]. It has been seen that the shear centre refers 
to that point in the section through which a transverse shear force must pass if it  
 

 

Figure 6. Element of a thin-walled open tube under torsion. 
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is to bend but not twist the beam. Moreover, a torque must be applied about a 
longitudinal axis through the centre of twist if it is to twist and not to bend the 
beam. By deduction, taking a reciprocal relationship to apply between these two 
centres, for shear and torsion, has assumed their coincidence [9]. Note: De-
pending upon the cross-section, a more rigorous proof, based upon minimal 
strain energy arising from each of the loadings applied separately to the shear 
centre [10] may not predict the coincidence assumed. 

4.2. Restrained Warping 

The St Venant torsion theory cannot be applied to a beam with one end fixed 
due to the constraint that the end-fixing imposes. Let axial co-ordinate axis z 
pass through E. Section co-ordinate s lies along the mid-wall perimeter and 
co-ordinate n is aligned with the direction of the normal to the mid-wall (see 
Figure 6(a) and Figure 6(b)). 

In Figure 6(b) the shear stresses τnz and τsz (=τzs) within an element δs × δz of 
the wall are shown with their complementary action. The elemental length δs 
subtends an area δAE at E: 
 δAE = (1/2)Rtδs (20) 

Restraining warping in the z-direction will introduce an axial stress σz as 
shown. Consider a point C lying upon the median co-ordinate s. If we draw the 
tangent to s at this point then normal and tangential radii, Rn and Rt for C re-
spectively, are centred at E, shown in Figure 7(a).  

4.3. Unconstrained Warping 

When there are no constraints to twist, the tube will warp freely in its length. Let 
the tube wall twist by the small amount δθ at E so that point C moves to Cʹ in 
Figure 7(b). The tangential and normal components of this displacement are: Rt 
δθ and Rn δθ respectively. Two warping displacements of C, δws and δwn, are 
aligned with the length. They are found from the shear distortion of the element 
in two planes, s − z and n − z, as shown in Figure 8(a) and Figure 8(b). 
 

 

Figure 7. Normal and tangential radii Rn and Rt to median co-ordinate s. 
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Figure 8. Shear distortion to the wall of an open tube under torsion. 
 

The primary warping displacement, ws in Figure 8(a), occurs in the s − z 
plane and is constant across the wall. The corner C will warp by an amount δws 
in the direction of z. C also displaces tangentially by the amount Rtδθ. The shear 
strain γsz in the s − z plane is the sum of these two shear angles 

 sz s tw s R zγ δ δ δθ δ= +  (21a) 

Secondary warping wn, occurs in the n − z plane and varies through the wall in 
the manner of Figure 8(b). The mid-wall shear strain is given as 

 ( )1 2nz n nw n R zγ δ δ δθ δ= +  (21b) 

Under pure torsion the shear stress in the wall of a tube varies linearly 
through the thickness to obtain maximum values at the inner and outer edges. 
Hence, the two shear stresses associated with each shear strain in Equations 
((21a), (b)) are: τsz = Gγsz and τnz = Gγnz. These are to equal zero along the 
mid-line from which the two incremental warping displacements follow: 

 ( ) ( )and 2s t n nw R z s w R z nδ δθ δ δ δ δθ δ δ= − = −  (22a, b) 

Now from Equation (20) Rtδs = 2δAE where Rt will depend upon s but Rn is 
taken to be independent of n. Hence the primary and secondary warping dis-
placements [11] become 

 ( )
0

d 2
s

s t Ew z R s A zδθ δ δθ δ= − = −∫  (23a) 

 2n nw R n zδθ δ= −  (23b) 

where δθ/δz = T/(GJ) and AE is the area swept between E, the datum s = 0 
(where w = 0) and the perimeter length s (see Figure 9(a)). The total warping 
displacements at point (s, n) is found from Equations ((23a), (23b)) as w = ws + 
wn. In fact, an unconstrained secondary warping wn is usually negligible com-
pared with primary warping ws but where the former matters it is considered 
separately in §4.7. The analysis proceeds with primary warping but note that AE 
in Equation (23a) will be incorrect by an amount AE' when the datum s = 0 does 
not coincide with a point of zero warping displacement (see Figure 9(b)). How-
ever, Equation (23a) provides the relative displacements between points cor-
rectly. When Equation (23a) is applied between free surface points, the primary 
warping displacement ws will be found to be independent of the position of  
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Figure 9. Areas AE and AE' enclosed between the shear centre E and the mean wall pe-
rimeter. 
 
E, which is normally coincident with the centre of twist, i.e. at the centre of rota-
tion [12]. 

4.4. Constrained Primary Warping 

It may not be obvious where a point of zero warping lies and so by taking an ar-
bitrary origin for s, where there is a warping displacement, the swept volume 
required is overestimated by an amount AE' (see Figure 9(b)). To correct this, it 
is known that axial stress induced from constraining a primary warping dis-
placement has no resultant force. This condition gives 

 
0

d 0z
s

t sσ =∫  (24a) 

The strain εz, arising from the uniaxial elastic stress σz, obeys Hooke’s law: 

 ( )z z sE E w zεσ = = ∂ ∂  (24b) 

Substituting Equation (23a) into Equation (24b) gives, 

 2 22 d dz EA E zσ θ= −  (24c) 

Now θ is independent of s, varying only with z and, therefore, from Equations 
((24a), (24c)), 

( )2 2
0

d d 2 d 0E
s

E z A t sθ− =∫  

 
0

2 d 0
s

EA t s∴ =∫  (25a) 

Let Aos = AE + AE' be the total area swept from s = 0 in Figure 9(b). Equation 
(25a) becomes 

 
0 0

2 d 2 d 0os E
s s

A t s A t s′− =∫ ∫  (25b) 

Writing 2 Ey A ′=  and y = 2Aos and taking t as a constant, Equation (25b) 
gives y  as 

 d dy sy s= ∫ ∫
  (25c)  
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Equation (25c) can be interpreted in the manner of Figure 10 below. This 
shows that y  is the height of a rectangle with the same area as that area en-
closed between y and the perimeter length s. 

Hence in Equation (25a), 

 2 2 2E os EA A A yy′= − = −   (26) 

Figure 11(a) and Figure 11(b) show the two planes, s − z and n − z, within 
Figure 6(b), in which the axial and shear stresses are allowed to vary with δs in 
the manner shown. 

The horizontal equilibrium equation for the element δs × δz in Figure 11(a), 
becomes 

( )( ) ( )( )z z sz sz z szz z t s s s t z t s t zσ σ δ δ δτ τ δ σ δ τ δ+ ∂ ∂ + + ∂ ∂ = +   

which reduces to 

 ( ) ( ) 0z szz sτσ∂ ∂ + ∂ ∂ =  (27a) 

The horizontal equilibrium equation for the element δn × δz in Figure 11(b) 
becomes 

( )( ) ( )( )z z nz nz z nzz z t n n n t z t n t zσ σ δ δ δτ τ δ σ δ τ δ+ ∂ ∂ + + ∂ ∂ = +  

which gives 

 ( ) ( ) 0z nzz nτσ∂ ∂ + ∂ ∂ =  (27b) 

Equation (27b) is used later in §4.7 for a secondary warping analysis. The 
primary warping analysis begins with wall shear flow q in the plane of the 
cross-section. Here q is associated with a constant shear stress τsz in the wall 
which follows from Equation (27a) as 
 

 

Figure 10. Graph of y = 2Aos versus s showing y . 
 

  
(a)                                  (b) 

Figure 11. Stress variations across plane elements (a) δs × δz, (b) δn × δz. 
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 ( ) dsz zq t z t sτ σ= = − ∂ ∂∫  (28a) 

Substituting Equation (24c) into Equation (28a), 

 ( )3 3d d 2 dEq E z A t sθ= ∫  (28b) 

The Wagner-Kappus torque [5] follows from the shear flow q as 

 ( ) ( )3 3
0

d d d 2 d dw t t Ec c

s
T qR s E z R A t s sθ= =∫ ∫ ∫  (29a) 

where s c=  is the full length along the mid-wall perimeter co-ordinate s. The 
following substitutions are made when integrating Equation (29a) by parts 
( d du v uv v u= −∫ ∫ ) in combination with Equation (20): 

0
d

s
wT u v= ∫  

where,  

0
2 d and d d 2dE t E

s
u A t s v R s A= = =∫  

when Tw follows: 

 ( ) ( )23 3d d 2 2 d 2 d
cw E cE ET E z A A t s A t sθ  = − ∫ ∫  (29b) 

For a tube of constant thickness Equation (26) shows that 2AE can be identi-
fied with the ordinate y y−   in Figure 10. Hence, the first integral in Equation 
(29b) becomes zero, i.e. the nil sum of the areas lying above and below y  as 
shown. Equation (29b) reduces to 

 ( ) ( ) ( )23 3 3 3
1d d 2 d d dw Ec

T E z A t s E zθ Γ θ= − = −∫  (29c, d) 

The integral term in Equation (29c) is a property of the section known as the 
primary warping constant Γ1 (for torsion and bending) [13]. This constant may 
be found as follows: 

 
( ) ( )2 2

1

2 2

2 d d

d 2 d d
EA t s y t s

y t s yt s ty s

y

y

Γ = = −

= − +

∫ ∫
∫ ∫ ∫



 

 (30a) 

Substituting from Equation (25c): d dyt s t sy= ∫∫
 , defines Γ1: 

 2 2
1 d dy t s y t sΓ = −∫ ∫

  (30b) 

If t is constant in Equation (30b) this simplifies to  

 ( )2 2
1 d dt y s syΓ = −∫ ∫

  (30c) 

in which the first term to be integrated is the square of the ordinate in Figure 10 
and the second integral is the perimeter length. 

4.5. Twist Rate and Stiffness 

The total torque is the sum of the St Venant and Wagner and torques T = Tv + 
Tw. The former follows as Tv = GJ(δθ/δz), where J for an open section, composed 
of thin rectangles breadth b and thickness t, is given as J = ∑bt3/3. Adding Tw 
from Equation (29d) 
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 3 3
1d d d dT GJ z E zθ Γ θ= −  (31) 

The solution of Equation (31) provides the rate of twist, equal and opposite at 
the ends, where z = 0 and z = L [14]: 

 ( ) ( ) ( )d d 1 cosh coshz T GJ L z Lθ µ µ= − −    (32a) 

where ( )1GJ Eµ Γ= . Equation (32a) shows how the twist rate varies with 
length z in a tube constrained at one end. Integrating Equation (32a) and sub-
stituting z = L gives the constrained angular twist at the free end: 

( ) ( ) 11 tanhTL GJ L Lθ µ µ− = −   

 ( ) ( ) ( ) ( ) ( )1 1 exp 2 1 exp 2T GJ L L L Lθ µ µ µ µ µ= − + + − + −        (32b) 

from which the constrained beam’s free-end “torsional stiffness” is 

 ( ) ( ) ( ) ( )1 exp 2 1 1 exp 2T GJ L L L Lθ µ µ µ µ µ= + − − + + −        (32c) 

Equation (32c) provides the amount by which the free St Venant’s torsional 
stiffness T/θ = JG/L for the unconstrained tube is increased by fixing one end. 
From Equations (29d) and (32a), the Wagner torque is written as 

( )3 3
1 d dwT E zΓ θ= −  

 ( ) ( )cosh coshwT T L z Lµ µ= −  (33a) 

in which Equation (32a) has provided the third derivative as: 

 ( ) ( )3 3 2d d cosh coshz T GJ L z Lθ µ µ µ = − −   (33b) 

Equation (33a) shows that at the fixed-end of the cantilever beam, where z = 
0, Tw = T, i.e. all the torque is due to “bending” [5]. At the free end (z = L) Tw 
diminishes to T/coshμL, i.e. a bending contribution remains. 

4.6. Axial Stress 

With the warping constraint at the fixed-end, the axial stress is given from Equa-
tions (24c) and (32a) as 

( )2 22 d d 2 sinh coshz E EA E z A E T L z Lσ θ µ µ µ µ= − = − × −  

 ( ) ( )12 sinh coshz EA T L z Lσ µΓ µ µ= − −  (34a) 

Hence σz is zero at the free end and attains a maximum at the fixed end. Using 
Equations (23a) and (26), the “free” primary warping displacement wo is given 
as: 

( ) ( )2 2o E Ew A z A T GJ y Ty GJδθ δ= − = − = − −   

Hence the coefficient in Equation (34a) appears in terms of wo as 
 1 12 E o oA T w GJ EwµΓ µΓ µ∴ = − = −  (34b) 

Combining Equations ((24a), (24b)), it is seen how the axial stress is simpli-
fied: 

 ( ) ( )sinh coshz oEw L z Lσ µ µ µ= −  (34c) 
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which shows that σz is proportional to wo for a given position z in the length. 
Equation (24b) gives the constrained warping displacement at position 0 < z < L, 

 ( )
0

1 d
z

zw E zσ= ∫  (35a) 

Substituting Equation (34c) into (35a) and integrating, 

( ) ( )
0

cosh sinh d
z

ow w L L z zµ µ µ= −      ∫  

 ( ) ( )1 cosh coshow w L z Lµ µ= − −    (35b) 

Equation (35b) shows that free warping displacement wo exists partially at the 
free end (z = L) and is eliminated at the fixed end (z = 0). The problem of con-
strained warping in closed tubes is more complex than in thin-walled open tubes 
and sections, largely due to the uncertainty of an origin of s [15]. 

However, for doubly symmetric closed tubes, Equations (34c) and (35b) still 
apply. The following examples will show how to apply the Wagner–Kappus the-
ory [5] specifically to open sections. 

4.7. Secondary Warping 

Up to now we have ignored the small contribution to axial warping occurring 
across the wall thickness. This is acceptable for most open sections but not for L- 
and T-sections where Γ1 = 0 with their respective shear centres lying at the in-
tersection between the rectangular limbs. These sections employ a secondary 
warping constant Γ2 due to twist in the Wagner-Kappus theory. To derive Γ2, 
generally, the contributions to the torque from both τsz and τnz in Figure 6(b) 
are required. That is, for components τzs and τzn acting within an elemental area 
δs × δn of the wall thickness shown in Figure 7(a): 

 ( ) ( )sz t nz nT s n R s n Rδ τ δ δ τ δ δ= × − ×  (36a) 

Now from the equilibrium Equations ((27a), (27b)) the shear stresses for the s 
− z and n − z planes are, 

( )sz z z sστ δ= − ∂ ∂  and ( )nz z z nστ δ= − ∂ ∂ , 

Substituting into Equation (36a) and integrating for the limiting δT as δs → 0 
and δn → 0: 

 ( ) ( ) ( ) ( )
0 0

d d d d d d d
s n

t z n zT s n R z s s n R z nσ σ= − × ∂ ∂ + × ∂ ∂∫ ∫  (36b) 

The sum of Equations ((23a), (23b)) gives the total warping displacement as 
δz → 0 

 ( )( )2 d d E nw z A R nθ= − +  (37) 

from which the axial stress and its derivative follow: 

 ( )( )2 22z E nE w z E z A R nσ θ= ∂ ∂ = − ∂ ∂ +  (38a) 

 ( )( )3 32z E nz E z A R nσ θ∂ ∂ = − ∂ ∂ +  (38b) 

Substituting Equations ((38a), (38b)) into Equation (36b) 
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( ) ( ) ( )

( ) ( ) ( )

3 3
0

3 3
0

d 2 d d d

2 d d d

s
E n t

n
E n n

T E z A R n s s n R

E z A R n n s n R

θ

θ

 = ∂ ∂ + × × 
 
  



− ∂ ∂ + × ×

∫

∫
 (39a) 

Integrating (Equation (39a)) for T 

 
( ) ( ) ( )

( ) ( ) ( )
0

3 3
0 0

0 0
3 3

0

2 d d d

2 d d d

n s s

s n

E n t

E n n
n

T E z A R n s R s n

E z A R n n R n s

θ

θ

 = ∂ ∂ + × ×  

− ∂ ∂ + × × 

∫ ∫ ∫

∫ ∫ ∫
 (39b) 

Noting from Equations (29c, d) that the first integral is negative, enables the 
total (Wagner) torque, arising from primary and secondary warping, to be writ-
ten as a sum: 

 ( )( ) ( )3 3 3 3
1 2 ET E z E zΓ Γ θ Γ θ= − + ∂ ∂ = − ∂ ∂  (39c) 

where, correspondingly, the total warping constant ΓE is the sum of the primary 
and secondary warping constants, Γ1 and Γ2, appearing as the respective integrals 
[10]: 

 ( ) ( )1 0 0 0
2 d d d

n s s
E n tA R n s R s nΓ = + × × ∫ ∫ ∫  (40a) 

 ( ) ( )2 0 0 0
2 d d d

s n n
E n nA R n n R n sΓ = + × × ∫ ∫ ∫  (40b) 

Integrating Equation (40a) by parts between limits 0 to s and n from −t/2 to 
t/2 again leads to Equation (29c). Equation (40b) integrates as a sum between 
similar limits: 

( ) ( ) ( ) ( )2 2
2 0 2 0 0 2 0

2 d d d 2 d d d
s t n s t n

E n n nt t
A n R n s R n n R n sΓ

− −
   = × × + × ×      ∫ ∫ ∫ ∫ ∫ ∫  

( ) ( )2 2 2 2
2 0 2 0 2

2 d d d d
s t s t

E n nt t
A R n n s R n n sΓ

− −
= +∫ ∫ ∫ ∫  

where the first integral is zero between the given limits of t. This leaves the sec-
ond integral to define the secondary warping constant as 

 ( ) 2 3
2 0

1 12 d
s

nR t sΓ = ∫  (40c) 

Hence the total warping constant ΓE = Γ1 + Γ2 for any thin-walled open section 
becomes 

 ( ) ( )2 2 3
0 0

2 d 1 12 d
s s

E E nA s R t sΓ = +∫ ∫  (41) 

4.8. Warping Constants 

It has been shown how to evaluate the first integral Γ1 due to bending. The sec-
ondary warping constant Γ2 due to twist is usually small enough to be ignored 
but must be employed for sections where Γ1 = 0, [16]. This is especially impor-
tant in thicker sections where secondary warping stress due to twist can become 
significant, as the following examples show. For section Figure 12(a), when s 
moves vertically with s along the mid-wall line from the outer edge D to E no 
area is subtended when the intersections between limbs coincides with the shear  

https://doi.org/10.4236/wjm.2024.143003


D. W. A. Rees, A. M. S. Alsheikh 
 

 

DOI: 10.4236/wjm.2024.143003 42 World Journal of Mechanics 
 

 

Figure 12. Thin angle sections with unequal limbs. 
 
centre E. The same applies when s moves horizontally from E to F. Hence Γ1 = 0 
and so there is no primary warping in this section. 

A similar result applies to Figure 12(b), i.e. for each angle section shown in 
Figure 12(a) and Figure 12(b), Γ1 = 0. Hence secondary warping becomes the 
dominant (sole) mode. Therefore, expressions for the constants Γ2 are required 
for the angle section geometries given in Figure 12(a) and Figure 12(b). 

To determine Γ2 from Equation (40c), Rn is measured within each limb with 
its centre at E. This gives Rn = a − s for limb DE as shown and Rn = s for limb EF. 
Then, given a constant thickness t for the angle section in Figure 12(a): 

( ) ( ) ( )
( ){ }
( )( )

23 3 2
2 0 0

3 2 2 3 3

0 0

3 3 3

12 d 12 d

12

36

3 3

a b

a b

t a s s t s s

t a s as s s

t a b

Γ = − +

 = − + + 

=

 

+

∫ ∫
 

Similar radii Rn apply to the inverted T-section, with different thicknesses t1 
and t2 in Figure 12(b). A factor of 2 accounts for a flange length 2b bisected by 
the web. 

( ) ( ) ( )
( ) ( )
( ) ( )

23 3 2
2 1 20 0

3 2 2 3 3 3
1 20 0

3 3 3 3
1 2

12 d 12 d

12 6

36 18

3 3

a b

a b

t a s s t s s

t a s as s t s

t a t b

Γ = − +

 = − + +    

= +

∫ ∫
 

5. Channel Section-Axial Torsion at Shear Centre  

Stress calculations apply to seven points taken anticlockwise along the mean wall 
perimeter of the asymmetric channel (see Figure 13(a)): points 1 and 7 at the 
flange ends; points 3 and 5 at the corners; point 4 at the intersection with the 
x-axis and points 2 and 6 at the intersection with the y-axis. Consider a uniform 
thickness channel section cantilever beam with an axial torsion applied to the 
shear centre axis E. Firstly, it is required to determine the primary warping con-
stant and the unconstrained warping displacements. These arise from opposing  
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Figure 13. Swept area for a channel section at the shear centre E. 
 
torques T applied to the beam’s free ends about a longitudinal axis passing 
through the shear centre E. For this analysis it is necessary to double the swept 
areas from E to points 1, 2, …, 7 for the ordinate of the plot shown in Figure 
13(a) and Figure 13(b). 

The position of E has been found in the previous example as 
( )23 6e a d a= + , this allowing Equation (25c) to identify dy s∫  with the en-

closed area and ds∫  as the perimeter length within Figure 13(b). Applying the 
moment area theorem: d dyy s s=∫ ∫

  to Figure 13(a), provides the centroid of 
the enclosed area: 

( ) ( ) ( ) ( )2 22 2 2 42 2ya d d dd edde ed+ = × + × + ×  
  

Then 

( )( ) ( )22 2 24 a ad ed dd ay = + + +  

When t is constant, the first integral 2dt y s∫  in Equation (30b) requires 
equations of straight lines 1 - 2 - 3, 3 - 4, 4 - 5 and 5 - 6 - 7 for Figure 13(b), as 
follows: 

1 - 2 - 3 (limits/range 0 ≤ s ≤ a) 

( )22 2 3
0

2; d 2 d 12
a

y ds y s ds s d a= = =∫ ∫  

3 - 4 [limits/range a ≤ s ≤ (a + d/2)]  

( )
( )

( ) ( )

( ) ( )

2 22

2 22 2

33 3

2 ;

d 2 d

2 2 2 d

24

a d

a
a d

a

y es ad ea

y s es ad ea s

e s es ad ea ad ea s

d e a e a

+

+

= + −

= + −

 = + − + −

 + 




= −

∫ ∫

∫
 

4 - 5 [limits/range (a + d/2) ≤ s ≤ (a + d)] 

( )
( ) ( ) ( )2 32 3 3

2 ;

d 2 d 24

y se ad ed ae

y s se ad ae s d e a e a

= − + + +

= − + + = + −    
 ∫

 

5 - 6 - 7 [limits/range (a + d) ≤ s ≤ (2a + d)] 

( ) ( )2 22 2 3 12 2 ; d 22 2 d
a d

a d
y ds d a d y s ds d a d s d a

+

+
= − + + = − + + =  ∫ ∫   
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The primary warping constant Γ1 is found from Equation (29) as follows: 

( ) ( ){ }
( )( ) ( )

32 3 3 3
1

22 2

2 12 24

16 2 2 2

t d a d e a e a

d a ad ed a d

Γ  = + + − 

− + + +
 

and the axial warping displacements w from Equation (23a): 

( ) ( )2 Ew A z y y T GJδθ δ= − = − −   

This gives displacements at the corner, free-end and web centre positions: 

( ) ( )1 7GJ T w GJ T w y= =   

( ) ( )3 5 2GJ T w GJ T w ady= = −  

( ) ( )4 2yGJ T w d a e= − +  

The analysis proceeds in relation to three US standard thin-walled channels, 
extruded to the following Imperial dimensions: 

A) a = 1/2", d = 1", t = 1/16", L = 300 mm (11.81"); 
B) a = 1", d = 1¾", t = ⅛", L = 1 m (39.37"); 
C) a = 5/8", d = 1⅞", t = 3/64", L = 340 mm (13.39"). 

where a is the length of each horizontal flange, d is the depth of the vertical 
web, t is the uniform thickness and L is the beam length. To avoid unnecessary 
conversions of the Imperial units various ratios are adopted for the calcula-
tions that follow including each section’s non-dimensional geometrical ratios 
given above. 

5.1. Unconstrained Warping 

The following unconstrained axial warping displacements w apply to points 1, 3, 
4, 5 and 7. They appear in fractions of a2 to allow conversion from the constants 
G, J and T: 

Section A:  
23 8, 1 4, 27 32ye a X a a′= = =  

( ) ( ) 2
1 7 27 32GJ T w GJ T w a= =  

( ) ( ) 2
3 5 5 32GJ T w GJ T w a= = −  

( ) 2
4 17 32GJ T w a= −  

Section B:  
212 31, 4 15, 0.7207ye a X a a′= = =  

( ) ( ) 2
1 7 0.7207GJ T w GJ T w a= =  

( ) ( ) 2
3 5 0.1543GJ T w GJ T w a= = −  

( ) 2
4 0.493GJ T w a= −  

Section C:  
21 3, 1 5, 27 20ye a X a a′= = =  
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( ) ( ) 2
1 7 27 20GJ T w GJ T w a= =  

( ) ( ) 2
3 5 3 20GJ T w GJ T w a= = −  

( ) 2
4 13 20GJ T w a= −  

which are distributed consistently over each section in the manner of Figure 14. 
Within this distribution, at the centroid axis intersections, point 2 lies upon the 
line 1 - 3 and point 6 lies upon the line 5 - 7, providing their axial displacements 
w proportionately. 

These unconstrained displacements arise from equal, opposing “St Venant” 
torques Tv applied about a longitudinal axis through the shear centre in a given 
length L of each channel cross-section. The angular twist θ between the ends 
follows from the St Venant torque as: θ = TvL/GJ, where J = (1/3)∑bt3 for a 
thin-walled open section and G is the shear modulus. To apply these formulae, 
take, for example, section A subjected to a torque Tv = 10 Nm. The warping dis-
placement at position 1 is calculated from the expressions given above as follows: 

( ) ( ) ( )3 3 3 41 3 2 43 3 3 4 12.7 25.4 16 67.74 mmJ bt a d t a t= = + = = × × =∑  

( ) 2
1 27 32GJ T w a=  

( ) ( )
2

1

2 3 3

27 32

27 32 12.7 10 10 70 10 67.74 0.287 mm

w a T GJ∴ = ×

= × × × × × =
 

The angular twist expression gives 

( ) ( )3 310 10 300 70 10 67.74 0.633 rad 36.25vT L GJθ = = × × × × = =   

5.2. Constrained Torsion 

Warping displacements w are constrained when one end section is fixed and the 
torque T is applied about the axis through E at the opposite free end. At the fix-
ing, because w is completely constrained, axial stress σz arises. At the free end 
and within the length 0 < z ≤ L, a partial constraint applies to which Equations 
(35b) apply. In calculating torsional stiffness and axial stress for the three sec-
tions with dimensions A, B and C given above, the following constants and ra-
tios apply. 
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Figure 14. Unconstrained axial warping displacement distribution. 

Section A: a = 1/2", d = 1", t = 1/16", L = 300 mm (11.81") 
t/a = 1/8, L/a = 23.62, d/a = 2, e/a = 3/8, y  = 27a2/32 
1) Constants 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

35 3
1

22

2 1 3 1 12 2 8 3 11 8 1

2 2 1 2 3 8 2 16 2 2

0.667 2.844 2.848 0.6628

a tΓ  = + − 

− + + × +      
= + − =

 

5 3 6
1 0.6628 524.48 10 mma tΓ = = ×  

( )( ) ( ) ( ) ( )33 3 43 2 4 3 4 3 12.7 25.4 16 67.74 mmJ t a d at= + = = × × =  

210 70 3E G = =   

( )3 5 2
1 4 9 0.6628 0.8189GJ E at a t t aµ = Γ = × =  

( )( )0.8189 0.8189 0.125 300 12.7 2.4179L t a L aµ = = × × =  

( ) ( ) 3exp 2 exp 4.836 7.938 10Lµ −− = − = ×   

2) From Equation (32b) the constrained, free-end torsional stiffness is: 

( )( ) ( ) ( ) ( )
2 30.8189 4 3 0.6975

1 exp 2 1 1 exp 2T G J L L L

t

L

a at

θ µ µ µ µ µ = + − − + + − 

×



×



=
   

3 4 370 10 0.7616 26.67 10 N mm rad
26.67 N m rad

T t aθ∴ = × × = × ⋅
= ⋅

  

to be compared with an unconstrained St Venant’s stiffness: 
370 10 67.74 300 15.806 N m radvT GJ Lθ = = × × = ⋅  

In which the 50 % increase in T/θ is due to the Wagner-Kappus contribution 
to the increased stiffness. 

3) The fixed-end axial stress distribution for z = 0 follows from Equations 
(26) and (34a) as 

( ) ( ) ( )( ) ( )( )
( ) ( )

( )

1

2 5

3 2

1 exp 2 1 exp 2

0.8188 0.6628 0.9842

1.8135

z y T L L

y t a a

y

t

yyT t

y T

a

σ µΓ µ µ= − − × − − + − 
 



= − ××

= −







 

( )3 2 1.8135za t T y yσ = −  

and referring to Figure 13(a) for y at end and corner positions 1 and 3 and at 
the web centre 4: 

1 0y = , then ( )3 2 2 2
1 1.8135 1.8135 27 1.532 3za t T a ayσ = = × =  

( ) ( )2
1 71.53z zatσ σ= =  

3 2y ad= , then 
( ) ( )

( )

3 2
3

2 2

1.8135 2

1.8135 27 32 1 0.2834
za t T ad

a

y

a

σ = −

= − = −


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( ) ( )2
3 50.2834z zT atσ σ= − =  

( )4 2y a e d= + , then, 
( ) ( )

( )

3 2
4

2 2

1.8135 2 2

1.8135 27 32 1 0.375 0.9634
za t T y ad ed

a a

σ = − −

= − − = −



 

( ) 2
4 0.9634z T atσ = −  

Section B: a = 1", d = 1¾", t = ⅛", L = 1 m (39.37") 
t/a = 1/8, L/a = 39.37, d/a = 1¾, e/a = 12/31, y  = 0.7207a2 
1) Constants 

( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 3 35
1

22

1 6 7 4 1 12 7 4 31 12 1 12 31 1

7 4 2 1 7 4 12 31 7 4 16 2 7 4

0.5104 1.9254 1.9478 0.488

a tΓ  = + + − 

− + + +      
= + − =

 

5 6 6
1 0.488 16.381 10 mma tΓ = = ×  

( )( ) ( )3 3 43 2 5 4 1016.8 mmJ t a d at= + = =  

210 70 3E G = =   

( )3 5 2
1 5 4 3 0.488 0.924GJ E at a t t aµ Γ= = × × =  

( )( )0.924 0.924 39.37 8 4.547L t a L aµ = = × =   

( ) ( ) 3exp 2 exp 9.095 0.112 10Lµ −− = − = ×  

2) The Torsional Stiffness follows from the free-end angular twist as: 

( )( ) ( ) ( ) ( )
2 3

1 exp 2 1 1 exp

0.924 5 4 0.2819

2T G J

t a at

L L L Lθ µ µ µ µ µ = + − − + + − 

= × ×

   

4 370 10 0.3256 91.18 10 N mm rad 91.18 N m radT t aθ∴ = × × = × ⋅ = ⋅  

Here with the increased beam length of 1 m for section B) the torsional stiff-
ness this channel section agrees with its asymptotic value:  

( ) ( )3 31 4.55 10 70 10 1016.8 4.55 1
91.23 N m rad

T GJ Lθ µ µ −→ − = × × × × −

= ⋅
 

to be compared with the St Venant’s torsional stiffness for when both ends are 
free: 

370 10 1016.8 1000 71.18 N m radvT GJ Lθ → = × × = ⋅  

which for section B) lies at its closest for to the stiffness (91.18 Nm/rad) in a 1 m 
long thin-walled channel beam with one end constrained. 

3) At the fixed end (z = 0) axial stress distribution follows from Equation 
(34a), in which the corresponding near asymptotic values apply 

( ) ( ) ( )( ) ( )( )
( ) ( )
( ) ( )

( )

1

1

2 5

3 2

1 exp 2 1 exp 2

2

0.924 0.488 0.99977

2.217

z y

y

y T L L

y T

y T t a a t

T y a

y

y t

σ µΓ µ µ

µΓ

= − − × − − + −  
≈ −

 = − − × × 
= − −








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( )3 2 2.217z ya t T yσ = −  

and referring to Figure 13(a) and Figure 13(b) for y at each position 1 and 3 
and at the web centre 4: 

1 0y = , then ( )3 2 2 2
1 2.217 2.217 0.7207 1.5978z ya t T a aσ = = × =  

( ) ( )2
1 71.5978z zT atσ σ= =  

3 2y ad= , then 
( ) ( )

( )

3 2
3

2 2

2.217 2

2.217 0.7207 7 8 0.3421
za t T ad

a

y

a

σ = −

= − = −



 

( ) ( )2
3 50.3421z zT atσ σ= − =  

( )4 2y a e d= + , then, 
( ) ( )

( )( )

3 2
4

2 2

2.217 2 2

2.217 0.7207 7 8 7 8 12 31 1.093
za t T y ad ed

a a

σ = − −

= − − = −  



 

( ) 2
4 1.093z T atσ = −  

Section C: a = 5/8", d = 1⅞", t = 3/64", L = 340 mm (13.39") 
t/a = 3/40, L/a = 22, d/a = 3, e/a = 1/3, y  = 27a2/20 
1) Constants 

( ) ( )( ) ( )( ) ( )

( ) ( ) ( )

35 3
1

22

1 6 9 6 1 12 3 3 4 3 1

3 2 1 3 1 3 3 16 2 3

1.5 9.25 9.1125 1.6375

a tΓ  = + × − 

− + + × +      
= + − =

 

5 6 6
1 1.6375 1.966 10 mma tΓ = = ×  

( )( ) ( )3 3 43 2 5 3 44.656 mmJ t a d at= + = =  

210 70 3E G = =  

( )3 5 2
1 5 9 1.6375 0.5825GJ E at a t t aµ Γ= = × =   

( )( ) ( )0.5825 0.5825 3 40 22 0.9611L t a L aµ = = × × =  

( ) ( )exp 2 exp 1.922 0.1462Lµ− = − =  

2) Equation (32b) provides the constrained, torsional stiffness [4] at free-end 
as: 

( )( ) ( ) ( ) ( )

( )( )2 3 4

1 exp 2 1 1 exp 2

0.5825 5 3 4.6252 4.4904

T G J L L L L

t a at t a

θ µ µ µ µ µ = + − − + + −   

= × =
 

3 4

3

4.4904 70 10 1.1906 15.875

39.79 10 N mm rad 39.79 N m rad

T θ∴ = × ×

= × ⋅ = ⋅

×
 

to be compared with an unconstrained St Venant’s torsional stiffness [5]: 
370 10 44.656 340 9.194 N m radvT GJ Lθ = = × × = ⋅  

For channel section C), a greater than fourfold increase in its constrained 
stiffness is attributed to the Wagner-Kappus contribution to the total torque.  
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3) The fixed end (z = 0) axial stress distribution follows from Equation 
(34a) as 

( ) ( ) ( )( ) ( )( )1 1 exp 2 1 exp 2z y T Ly Lσ µΓ µ µ= − − × − − + −  
  

( ) ( ) ( ) ( )
( )

2 2

3 2

0.5825 1.6375 1 0.1462 1 0.1462

0.7809

z y T t a a

y

t

T y a t

yσ  = − − × × − + 
= −





 

( )3 2 0.7809z Ta y yt σ = −  

Referring this equation to Figure 13(a) and Figure 13(b), for y at each po-
sition 1, 3 and 4: 

1 0y = , then ( )3 2 2 2
1 0.7809 0.7809 27 20 1.054za yt T a aσ = = × =  

( ) ( )2
1 71.054z zT atσ σ= =  

3 2y ad= , then 
( ) ( )

( )

3 2
3

2 2

0.7809 2

0.7809 27 20 1.5 0.1171
za t T ad

a

y

a

σ = −

= − = −



 

( ) ( )2
3 50.1171z zT atσ σ= − =  

( )4 2y a e d= + , then, 
( ) ( )

( )

3 2
4

2 2

0.7809 2 2

0.7809 27 20 1.5 0.5 0.5076
za t T y ad ed

a a

σ = − −

= − − = −



 

( ) 2
4 0.5076z T atσ = −  

5.3. Axial Stress Distribution 

Figure 15 shows the common manner in which the axial stress in each section is 
distributed across its fixed end. The greatest axial tensile stress occurs at the 
flange ends (points 1 and 7) and the greatest compressive stress lies at the web’s 
mid-position 4. 

The normalised axial stress calculated at each position 1, 3 and 4 per unit 
torque are listed for the three channel geometries in Table 1. Referring to Figure 
15, there is an equality in stress between flange end positions 1 and 7 and be-
tween corner positions 3 and 5 as shown. 

The entries given in Table 1 along with the section dimensions (a × t) allow a 
calculation of the stress magnitudes that apply to Figure 15. Taken with the 
conversion of each section’s Imperial dimensions (a × t) each entry allows a cal-
culation of the stress magnitude. For example, if a “unit” torque of 1 Nm is ap-
plied across the top row then the normalised stress entries at position 1 for 
channel sections A, B and C are converted to axial stress in MPa as follows: 
 
Table 1. Normalised axial stress (at2/T)σz at positions 1, 3 and 4 for three channel 
cross-sections with torque at E. 

Section (a × t) → (a) ½" × 1/16" (b) 1" × ⅛" (c) 5/8" × 3/64" 

1 1.53 1.5978 1.054 
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3 −0.2834 −0.3421 −0.1171 

4 −0.9634 −1.093 −0.5076 

 

Figure 15. Axial stress distribution at the channel fixing with axial torque applied to an 
axis through the shear centre. 
 

( )2 3 3
2

1 11.530 1.530 1 10 25.4
2 1

47.80 MPa
6z T atσ = = × × ×  =  

×  

( )2 3 3
2

11.5978 1.5978 1 10 1 6.225.4
8

4 MPaz T atσ   == = × × × 
×   

( )
2

2 3 35 31.004 1.004 1 10 25.4
8 6

44.61 MPa
4z T atσ  

= 
 

= = × × × ×



 

 

Under this torque value such elastic stress magnitudes may be borne by an 
aluminium beam at the end fixing without yielding occurring, given that they 
diminish to zero at the free end. 

Finally, in answer to the question: What is the relationship between axial 
stress and constrained warping? Equation (34c) shows that there is no axial 
stress at the free end (z = L) where the maximum warping displacement occurs. 
The influence of constraining warping at the fixed end extends to all intermedi-
ate sections in the beam length where, for 0 < z < L, Equations (34c) and (35b) 
provide the interdependent relationship between warping displacement and 
stress. At the fixed-end of a cantilevered beam, where z = 0, these equations 
show that w = 0 with σz = μEwo tanh(μL) at its maximum. At the free end where 
z = L, then σz = 0 and the warping displacement w = wo(1 − 1/coshμL) takes its 
maximum value, this being less than the “free” warping displacement wo where. 

 ( ) ( )2o Ew A z y y T GJδθ δ= − = − −   (42a) 

For all other “constant” position 0 < z < L in the length Equation (34b) has 
shown that σz is proportional to wo in which the constant of proportionality is 
identified as: 

 ( ) ( ){ }sinh coshz oE L z L wσ µ µ µ= − ×    (42b) 

Combining Equations ((42a), (42b)) then shows how σz varies with the sec-
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tion’s swept area AE at a given position in the length: 

( ) ( ){ } ( )sinh coshz yE L z L y T GJσ µ µ µ= − × −  
  

( ) ( ){ } ( )sinh coshz ET GJ L z L yyσ µ µ µ= − × −  
  

 ( ) ( ) ( ){ }12 sinh coshz ET L z L Aσ µΓ µ µ= − ×    (42c) 

Equation (42c) shows that the axial stress depends upon the constrained 
warping displacement distribution in the cross-section at a given position in the 
length 

6. Conclusions 

Thin-walled cantilever beam of open channel section will bend and twist when 
its free end transverse loading is applied at the section’s centroid. Twist is elimi-
nated when that loading is displaced to the shear centre. A reciprocal behaviour 
is found when a torque is applied about a longitudinal axis through the centre of 
twist where torsion is not accompanied by bending. However, this torsion is not 
pure for a cantilever beam when its one fixed-end constrains completely the 
natural warping that would be found when both ends are free. In this paper the 
two “centres” have been assumed to coincide.  

A theoretical basis for coincidence has examined the influence of an applied 
torque displaced from the shear centre E to the centroid G and to the web centre 
O. There it is found that an unconstrained warping distribution and the con-
strained axial stress distribution depend in a similar manner upon the axis of 
torsion. Differences between these two distributions for axes at E and G and be-
tween axes at E and O would suggest that a coincidence between centres is a 
valid assumption to be adopted here, however, having a combined torsion and 
bending loads applied to a thin walled-structure will result of different behav-
iour, and for the extended analyses given in [17]. 
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List of Symbols 

a, d, t  cross-section dimensions 
A   cross-sectional area 
ex, ey  shear centre position 
X'  centroid position 
x, y   centroid co-ordinates 
Dx, Dy  first moments of area 
E   tensile modulus 
Fx, Fy  transverse shear forces 
G   shear modulus 
Ix, Iy  second moments of area 
J   St Venant’s torsion constant 
L   beam length 
Mx, My  bending moments 
N   wall normal 
q   shear flow 
R   perpendicular length 
s   wall median co-ordinate 
t   wall thickness 
T   axial torque 
u, v  principal co-ordinate axes 
w   constrained warping displacement 
wo  unconstrained warping displacement 
y   swept area ordinate = 2AE 
y   swept area mean 

z   length co-ordinate 
εz,  axial strain 
Γ1  primary warping constant 
μ   warping constant 
σz   axial stress 
τzs  shear stress 
θ   angular twist 
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