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Abstract 
Current environmental and eco-design issues require the use of environmen-
tally friendly materials. These make up a large share of the building materials 
market. Natural fibers are already used in various types of materials, such as 
plastics, concrete and lime-based products. They exhibit different attributes 
like the right combination of mechanical, thermal and acoustic properties, 
allowing these types of materials to be used for different applications. The 
main disadvantage associated with plaster is its fragility, especially under 
mechanical stress. Therefore, it becomes interesting to study different me-
thods that could improve the mechanical properties of plaster. The addition 
of fibers to the plaster to obtain a composite material is already recognized as 
a means of improving the behavior of the product, in particular after the 
rupture of the matrix. The aim of this work was to study the effects of the ad-
dition of natural fibers from the stem of Cola lepidota (CL), on the physical 
properties and the mechanical behavior of the composite matrix. This study 
highlights the effects of fiber size and volume fraction. It has been shown that 
the mass of composites decreases as the percentage and length of fibers in-
creases. The mechanical properties of composite materials are also discussed. 
Even at low addition rates, CL stem fibers achieved slightly higher values of 
flexural properties. 
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1. Introduction 

Plaster is a white powder produced by calcining gypsum. This material is ex-
tremely old, it was discovered by mankind in antiquity. Gypsum is a very abun-
dant rock with crystalline forms. Gypsum has the formula CaSO4, 2H2O, and it is 
called dehydrated calcium sulphate. Due to its availability in the subsoil, its rela-
tively low cost, its high ease of use and its mechanical characteristics suitable for 
many purposes, plaster is a widely used building material, and its continued use 
of grow, as does the use of prefabricated gypsum products such as tiles and 
plates [1] [2]. However, the plaster seems to be permeable and too brittle [3] [4]. 
It is not suitable for exterior finishing [5] [6], as it is sensitive to humidity [7]. 
Dimensional variations are also observed depending on climatic conditions [8]. 
Improving the crack resistance of plaster is an essential problem to which the 
science of composite materials has naturally responded [9]. The main idea is to 
introduce a material in the form of fibers into a binder, called a matrix. From an 
elastic fiber and a fragile matrix, it becomes possible to obtain extremely resis-
tant materials. Fiberglass first appeared in plaster [4]. A number of studies have 
shown that plaster reinforced with synthetic fibers has better mechanical proper-
ties [10] [11], compared to vegetal fibers. However, these reinforcements are ex-
pensive, and this considerably weighs down the plates, making them less prac-
tical to use on larger sites [10]. In addition, they have a harmful effect on the en-
vironment [11]. In view of the disadvantages presented by these types of fibers, 
scientists have looked for solution to overcome these problems. Vegetable fibers 
are a potential source of low-cost material from renewable resources, respectful 
of the environment and less greedy in fossil energy. According to Dalmay et al. 
[12], the mechanical properties of plaster are improved by the use of natural fi-
bres. Several other reinforcements of plant origin can be used to reinforce the 
plaster [3] [13]-[18]. 

One of the current trends in the construction industry is to develop “green 
materials”: the use of natural fibers as reinforcement for lime plasters which 
plays a major role in this transition to renewable materials [19]. In general, the 
use of natural fibers is attractive for four main reasons: their specific properties, 
their price, their health benefits and their recyclability [20]. The low density and 
good specific properties of these fibers is an important asset. In addition, the fi-
bers are renewable and have a CO2-neutral life cycle, unlike synthetic fibers. 

One of the main disadvantages of using natural fibers as reinforcement in 
construction materials is the weak interaction between the fiber and the matrix. 
As a result, a large number of studies have focused on chemical (such as silane, 
alkalization or mercerization, and acetylation) or physical treatments of fibers to 
increase their surface roughness and improve durability interfacial adhesion 
while reducing their hydrophilicity [21] [22] [23] [24] [25]. Recently, the use of 
chemical treatments has become less attractive, as they have proven to be harm-
ful to the environment by involving the use of hazardous reagents. There are 
modern alternatives to physical and chemical methods of treating plant fibers; 
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these are biological treatments based on fungi and enzymes. By this approach, 
the homogeneity, fineness and efficiency of the fibers can be selectively im-
proved by eliminating the hydrophilic phases of pectin and hemicellulose which 
bind the fiber bundle, with a lower environmental impact than traditional me-
thods [26] [27] [28] [29]. In this study, retting was used. It removes waxy epider-
mal tissue, adhesive pectin and hemicellulose that bind fiber bundles together.  

Previous studies have characterized the stem fiber of CL [13] [30]. Those used 
come from the bark of the stem of the kola tree, genus CL present in the humid 
forest of ebemewoman 2, which is a town located in southern Cameroon. The 
identification of this plant is done thanks to its fruit having a white, edible and 
sweet aril (Figure 1). This aril is called in local language “imvoe” or “monkey 
cola”. It belongs to the Sterculiaceae family. It is an undergrowth shrub reaching 
15 m in height and 25 cm in diameter; bole bumpy, sparsely branched crown; its 
particularity is its bark: gray-green to brown, its right section shows a whitish 
slice with brown-yellow lines and exuding a yellowish secretion [13]. This colo-
ration is observed on the raw fibers extracted from the latter. According to Vi-
vian et al. [31], it is possible to cultivate the plant and harvest its fruits in the first 
year. 

In the present study, the main objective is to improve the physical and me-
chanical properties of gypsum by adding CL fibers, with a view to industrial ap-
plications. This study is divided as follows: the first section is this introduction. 
It is followed by the part devoted to materials and methods. The third part 
presents the results and analyses. This article ends with a conclusion. 

2. Materials 

The raw materials used in this study are plaster and fibers from the stem of Cola 
lepidota. During the study, they were stabilized in a controlled atmosphere (RH 
= 82% ± 2%) and in temperature (T = 30˚C ± 2˚C). 

The plant fiber used to prepare gypsum-based composites was extracted by 
retting [13]. The average fiber diameter is 158 μm. The organic and mineral 
contents of the CL fibers are 97.68% and 2.32% respectively. This ash content 
shows that the new fiber could have a good fire resistance capacity [32]. Studies  

 

 
Figure 1. CL: (a)-plant, (b)-fruit (c)-bark (d)-fibers [13]. 
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have shown that this fiber is thermally stable up to about 230˚C [13]. This value 
is consistent with those given in the literature for a plant fiber. Therefore, it can 
be used with a plaster matrix even being subjected to this temperature. 

The plaster used in this study is intended for decoration (manufacture of false 
ceilings and distribution partitions) and is purchased in a FOKOU shop in 
Ndokoti in Douala. Its flexural strength is 2.3 MPa, its Young’s modulus is 79 
MPa and its compressive strength is 0.5 MPa. According to Dalmay et al. [12] 
the mechanical resistance in bending of the plaster is 3.2 MPa, this value remains 
in the same order as ours. 

3. Plaster Reinforced CL Fiber Elaboration 

The specimens are manufactured in accordance with the specifications of 
Standard EN 13279-2, Plaster binders and plaster renders—Part 2: Test me-
thods. Table 1 shows the environmental parameters for the elaboration of the 
specimens. Table 2 shows the specimens for the test. These combinations of 
mixtures make it possible to highlight the effect of the rate and length of the 
CL fibers in the plaster matrix. Figure 2 shows the different compositions of 
the samples. 

The densities of the constituents are provided in the results of this study. 
The samples from this study are coded as presented in Table 2 below: 

 
Table 1. Experimental parameters. 

Gypsum/water 1 

Mixing time (s) 60 

Demoulding time (h) 24 

Humidity (%) 82 

Temperature (˚C) 30 

 

 
Figure 2. Realization of the composite plaster/CL. 

https://doi.org/10.4236/wjet.2022.104054


Z. T. S. Armand et al. 
 

 

DOI: 10.4236/wjet.2022.104054 828 World Journal of Engineering and Technology 
 

Table 2. Designation of specimens. 

Sample Codes Designation 

A0 Unreinforced plaster (A0) 

A1.5 
Plaster reinforced with a fiber length of 21mm (A) at 1.5%, 2.5% and 
3.5% respectively 

A2.5 

A3.5 

B1.5 
Reinforced plaster with a fiber length of 51mm (B) at 1.5%, 2.5% and 
3.5% respectively 

B2.5 

B3.5 

C1.5 
Reinforced plaster with a fiber length of 160mm (C) at 1.5%, 2.5% 
and 3.5% respectively 

C2.5 

C3.5 

D1.5 

Ground fibers (D) of 1.5%, 2.5% and 3.5% respectively D2.5 

D3.5 

4. Characterization of Composites 
4.1. Physical Characterization 
4.1.1. Real Density of the Composite 
Five specimens are used per length and percentages. The masses (m) of the dif-
ferent test specimens were taken. The volume of each specimen was determined 
from the dimensions taken and calculated according to formula 1: 

V l w h= ⋅ ⋅                           (1) 

where V is the volume (mm3), l the length (mm), w the width (mm) and h the 
thickness (mm) of the sample. 

The real density (Formula 2) of each composite is determined by taking the 
average mass of the samples divided by their average volumes. 

m
V

ρ =                             (2) 

where ρ  (Kg/m3) is the density, (Kg) the mass and (m3) the volume of the 
sample. 

4.1.2. Water Absorption of the Composite 
The determination of the percentage of water absorption is carried out using five 
specimens for each type of sample. The protocol complies with British standard 
EN 317. The samples are dried in the microwave at 30˚C for 12 hours, in order 
to eliminate any moisture they contain. A sample is taken and its initial mass 

iM  is noted. It is then placed in distilled water for 24 hours. Finally, we take the 
samples out of the water, clean it and measure the mass fM . The following 
materials were used: distilled water, precision balance (0.01 g), a container, the 
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dried samples, a soft and clean cloth, a stopwatch. The water absorption for each 
specimen was obtained by the following formula (3): 

( )% 100f i
A

i

M M
W

M
−

= ×                     (3) 

where ( )%AW  is the water absorption percentage, fM  the mass of the wet 
sample and iM  the mass of the dry sample. 

4.2. Mechanical Characterization 
4.2.1. Three-Point Bending Test 
The objective of the bending test is to determine the bending modulus of elastic-
ity MOE and the breaking stress in bending MOR. The test conditions follow the 
recommendations of standard EN 1015-11: 2000: Test methods for masonry 
mortars—part 11: determination of the flexural and compressive strength of 
hardened mortar. The materials used for the 3-point bending test are: the bend-
ing/compression testing machine, the specimens (three specimens for each pro-
portion and fiber length) and a camera. This machine is equipped with a 
1/1000th displacement and force sensor. It is located in the services of the Civil 
Engineering Department of ENSET Douala. The dimensions of the mold for 
composites are 160 mm × 40 mm × 40 mm. Figure 3 below shows this machine, 
called M & O universal machine H001B: 1000 kN, Made in Italy. 

The three-point bend test was performed on all composites. The MOE and 
MOR are determined by formulas (4) and (5) below: 

3

MOE
48 Gz

LE
I

α
= =                        (4) 

max
3

3
MOR

2
F L
bh

=                         (5) 

where Fmax is the maximum load (N); L, the distance between the two supports 
(mm); E, Young’s modulus on bending (MPa); IGz the quadratic moment of axis 
z (mm4); α, is the slope of the line in the domain (N/m); b is the sample width 
(mm); h, the thickness of the sample (mm). 

4.2.2. Compression Test 
The purpose of the compression test is to determine the compressive strength of 
specimens. The EN 1015-11: 2000 standard was used. The 3-point bending test  

 

 
Figure 3. Bending test machine and sequence of the 3-point bending test (a) specimen on 
device; (b) Cracked specimen (from below) on the device. 
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machine of the Civil Engineering laboratory of ENSET Douala was used for this 
purpose. This machine can measure small loads with precision. The test speci-
mens used are of dimensions 40 × 40 × 80 mm. Compressive strength CR  
(MPa) is given by formula (6): 

C
C

F
R

A
=                            (6) 

CF  being the ultimate load in compression and A the cross section of the 
specimen. A = 1600 mm2. 

5. Results and Interpretations 
5.1. Real Density of the Composite 

Figure 4 shows the real density variation of Plaster/CL composites. 
These results reveal that the unreinforced composite is more compact and 

denser than all the reinforced composites. The density of composites decreases 
as the percentage and length of fibers increases. Type D specimens have a densi-
ty close to that of unreinforced plaster (A0). A classification of the values ob-
tained shows us that the type C specimens (length 150 mm) are the least dense. 
It can therefore be deduced that samples with short fiber lengths are denser. This 
density is all the more important as the fiber content is low. The true and ap-
parent fiber densities of CL are approximately 1.7266 ± 0.0146 g/cm3 and 1.205 ± 
0.2941 g/cm3, respectively. Its real density has a value close to that of cotton (1.6 
g/cm3) [33]. Taking into account the standard deviation, the density of CL fiber 
is slightly lower than that of plaster (1.15 g/cm3). By mixing the two constituents, 
the volume of the samples is increased while reducing their masses, which could 
justify the behavior identified. Moreover, when the fiber is long, for the same 
volume ratio, the constraints related to the arrangement of the fiber bundles 
within the composite, generate areas of high porosities, thus contributing to  

 

 
Figure 4. Distribution of the density of the plaster/CL composite. 
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reduce the density of these samples. Conversely, for an identical reinforcement 
rate, shorter fibers tend to optimize the occupation of spaces within the speci-
men. There will therefore be an increase in the compactness and therefore the 
density of the samples. This behavior is similar to that of the plaster/date palm 
fiber composite [34]. For a plaster/olive fiber composite, this density decreases 
sharply when the percentage of olive fibers increases from 4% to 12% [35] [36]. 

The pore size and the dimensional variation capacity of the CL fiber can also 
partly justify the decrease in the density of the composites. Indeed, a statistical 
analysis of CL fiber diameters shows an asymmetric and flattened distribution 
with a degree of asymmetry (Sk) of 0.58 and a degree of flattening (Ku) of 0.34. 
The mean fiber diameter measured is 83.81 μm with a coefficient of variation 
(CV) of 18.61%. Compared to a study conducted on different varieties of flax fi-
bres, this diameter is in the upper range of the values obtained [37]. The intrinsic 
porosity of CL fibers is 13% [13]. This intrinsic porosity is of the order of that of 
hemp fibers and has a great influence on stress concentrations and entrainment 
failure within a fiber [30] [38]. 

5.2. Composite Water Absorption Rate 

Figure 5 shows the general variations in the water absorption rate of the plas-
ter/CL composite, at different volume fractions and fiber lengths. 

Figure 5 shows that the water absorption rate of the unreinforced composite 
is 59.78%. The water absorption rate of gypsum/CL composites increases as the 
percentage as well as the length of the fibers increase. The maximum and mini-
mum water absorptions belong to specimens C3.5 and A1.5 with values of 
130.48% and 17% respectively. The chemical composition of CL fibers is pre-
sented [13] and compared to those of other lignocellulosic fibers used as rein-
forcement of eco-composite structures. It is mainly composed of cellulose, he-
micellulose and lignin which occupy more than 80% of the constituent fractions. 
The cellulose content of CL fiber is closest to that of kenaf, jute, abaca fibers [39] 
[40] [41] and higher than that of fibers such as alfa, diss, banana or walnut coco 
[40] [42] [43], which are annual plants. Its lignin content is similar to that of  

 

 
Figure 5. General variation of the water absorption rate of the plaster/CL composite. 

https://doi.org/10.4236/wjet.2022.104054


Z. T. S. Armand et al. 
 

 

DOI: 10.4236/wjet.2022.104054 832 World Journal of Engineering and Technology 
 

Rhectophyllum camerunense fiber [44]. Due to its relatively high lignin content, 
CL fiber has a low moisture content (6.47%) [45]. It is therefore predisposed to a 
good fiber-plaster interaction in the manufacture of composite materials rein-
forced with CL fibers. Products made from this fiber are said to offer a good feel-
ing of comfort as it will absorb less than 7% moisture, very close to that of cotton 
and linen [46]. It is reported in the literature that a high moisture content com-
promises the stability of the composite in terms of dimensions, tensile strength, 
swelling behavior and porosity formation [47]. The O’Connor crystallinity index 
of CL fiber is about 42%. The water absorption capacity of raw CL fiber is 172%. 
This content is closest to that of common natural fibers such as: esparto fiber 158% 
[46], linen 136% ± 25%, hemp 158% ± 30%, sisal 200%, jute 281% and coconut. 
180% [43], which are generally used as reinforcement for composites. This rela-
tively low absorption rate of the CL fiber is partly related to its low porosity 
(Figure 6 below) [30], which also contributes to good mechanical strength [48]. 
The water absorption capacity indicates the existence of hydroxyl groups, which 
attract water molecules from the surrounding medium by hydrogen bonding [49]. 
These hydroxyl groups are responsible for the presence of hemicellulose molecules 
in the fiber. This content inspires precautions that should be taken into account 
before the manufacture of composites with CL reinforcements. The low absorption 
of the plaster/CL composites compared to the absorption of the CL fiber indicates 
the impermeability of the matrix, due to its viscosity, thus acting as a barrier to wa-
ter access to the fibers. Type D samples (crushed fibers) absorb less than other fiber 
lengths. Indeed, the fact that the fibers are ground, favors obtaining results close to 
type A fibers (less long). These observations are similar to those in the literature for 
the plaster/palm fiber composite [50] and the plaster/pineapple fiber [51]. 

Many studies show that reinforcing plaster with natural fibers increases its 
mechanical properties and its ability to absorb moisture [44] [52] [53] [54]. 

5.3. 3-Point Bending Characteristics 

Figure 7 is the graph showing the variations of the Young’s modulus of the  
 

 
Figure 6. Cross-sectional view (a) and longitudinal view (b) SEM of CL fiber bundle [30]. 

https://doi.org/10.4236/wjet.2022.104054


Z. T. S. Armand et al. 
 

 

DOI: 10.4236/wjet.2022.104054 833 World Journal of Engineering and Technology 
 

plaster/CL composite as a function of the volume ratio and the length of the fibers. 
According to the MOE bar chart (Figure 7), all specimens reinforced with CL 

fibers provide the better results compared to unreinforced plaster whose mod-
ulus of elasticity is 78.11 MPa. The highest value is observed for sample C2.5 
with a value of 177.67 MPa. The optimal length of plant fibers is obtained for 
type C samples (160 mm). The literature confirms these experimental results 
obtained. Indeed, for a reinforcement of the plaster by a synthetic or vegetable 
fiber, an increase in the initial properties of the unreinforced plaster is always 
observed. Thus, in the case of plaster/fiberglass, the modulus of elasticity of 
reinforced plaster is 880 MPa, i.e., 2 to 3 times higher than that of unreinforced 
plaster [55]. For the plaster/sisal composite, it is 690 MPa that of the plaster/RC 
is 500 MPa, plaster/Ananas cosmosus (AC) 444.66 MPa and for the plaster/CL, 
177.67 MPa is determined. The fibers increase the modulus of elasticity of the 
plaster and make it more ductile and therefore less brittle. But it should be noted 
that the determination of the percentage of fibers to be added is an overriding 
factor, since at very low or very high percentages it has no influence [56]. 

Figure 8 shows the results of mechanical resistance in bending of the Plas-
ter/CL composite. 

The results in Figure 8 show that the Plaster/CL composite has a flexural 
strength σr = 4.85 MPa for the A1.5 samples against 2.22 MPa for the unrein-
forced plaster. We can therefore deduce that the presence of fibers in the plaster 
makes it more resistant, with the exception of samples A2.5, C3.5 and D3.5. The 
mechanical resistance in bending of the composite of the present study is there-
fore the best. 

In Table 3 below, the tensile properties of CL fibers are compared to those of 
other plant fibers. In the case of taking into account or not the porosity, the 
samples are noted CL2 or CL1 respectively. These elements are integrated in the  

 

 
Figure 7. Evolution of the Young’s modulus in bending of the plaster/CL composite. 
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Figure 8. Evolution of the mechanical flexural strength of the plaster/CL composite. 

 
Table 3. Comparison of properties of CL fibers to others plant fibers. 

Fibers d (μm) E (GPa) σr (MPa) εr (%) 
Specific properties 

References 
σr/ρ (MPa/g∙cm−3) E/ρ (GPa/g∙cm−3) 

RC 0.947 2.3 - 17 150 - 1738 10.9 - 53 588.3 6.1 [44] 

Kenaf  -  41 745 - 930 1.6 620.8 - 775 34 [57] 

Banana 

Bamboo 

Flax 

10 - 30 

25 - 40 

12 - 600 

12 

11 - 32 

27.6 - 80 

12 - 30 

140 - 800 

500 - 1500 

1.5 - 9 

2.5 - 3.7 

1.2 - 3.3 

8.8 - 22 

127 - 727 

333 - 1000 

8.8 

10 - 29 

18.4 - 53.3 

[58] 

Palf 

Sisal 

 -  

157 - 319.2 

71 

4.7 - 20.5 

1020 - 1600 

296.6 - 410.4 

0.8 

2.4 - 4 

680 - 1066 

208.8 - 289 

47.3 

33.3 - 14.4 
[59] 

Hemp 13.7 - 25.8 31 - 65 182 - 1282 1.9 - 3.5 392.6 - 822.2 33.3 [60] 

CL1 

CL2 

66.2 - 117.4 

66.2 - 117.4 

18.2 - 60 

22.2 - 66.89 

457.6 - 1440 

526 - 1655 

2.4 - 2.6 

2.4 - 2.6 

280 - 883 

322.7 - 1015 

11.6 - 36.8 

13.6 - 41 
[30] 

 
calculation of the section and influence considerably the mechanical characteris-
tics in traction. 

When a decrease in flexural strength is observed for large quantities of rein-
forcing fibers, it means that porosity is created in the material due to an intra 
and extra-fiber void [61] [62], which reduces the compactness and cohesion of 
the composite. 

Other studies have been conducted on different fibers, such as coconut fibers, 
Djoudi et al. [63] show that the best result is obtained with a volume fraction of 
4% while Mathur [64] in a study on the reinforcement of plaster concrete with 
date palm fibers found that a fraction of 1.5% gives the best results in terms of 
tensile and flexural strength. Fiber length and optimum fraction in composites 
are two parameters that differ from fiber to fiber. This difference results from 
their morphology and chemical composition which are essentially linked to the 
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origin of the organic fiber and the plant itself. In general, the properties of a 
composite material result from the combination of several factors [4]: 

1) fiber length; 
2) fiber architecture; 
3) fiber orientation; 
4) fiber-matrix interface. 

5.4. Compression Characteristics 

Figure 9 shows the compressive strength of the plaster/CL composite. 
From Figure 9, unreinforced plaster has a compressive strength of 0.49 MPa. 

The compressive strength of plaster reinforced with CL fibers is superior to un-
reinforced plaster, but not for all samples. Specimens A2.5, C2.5 have values of 
0.96 MPa and 0.78 MPa respectively. 

By analogy, mechanical tests carried out on plaster samples reinforced with 
Retama monosperma fibers revealed that fibers with a length of 15 cm and a 
fraction of 1% gave the best performance in terms of resistance to bending, with 
an average of 1.12 MPa, as well as the compressive strength which was 11.68 
MPa. From these results, it is clearly seen that the flexural strength increases 
considerably with the dosage and the length of the fibres. A clear improvement 
for different lengths was observed for a dosage of 1% of fibers of 15 cm in length, 
after which a loss of the resistance to bending was recorded, due to an excess of 
fibers and a bad distribution of fibers in the matrix, which increased the porosity 
of the material and reduced the resistance to bending. Plaster reinforced with a 
small amount (0.5%) of Retama monosperma fibers showed an improvement in 
the mechanical properties of the composite, this is in agreement with the results 
of [64] where it is reported that, even in small amounts, the behavior of the plas-
ter changes [4]. The role of the fibers is to limit cracking of the plaster due to the 
phenomenon of plastic shrinkage. 

Table 4 below shows the mechanical characteristics of unreinforced gypsum 
and gypsum matrix composites reinforced with plant fibers. It appears that the 
Young’s modulus in bending is not sufficiently documented for composites with  

 

 
Figure 9. Evolution of the compressive strength of the plaster/CL composite.  
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Table 4. Mechanical characteristics of unreinforced plaster and plaster matrix composites 
reinforced with plant fibers. 

Plaster reinforcing 
fiber 

MOR (MPa) MOE (MPa) 
Compressive  

strength (MPa) 
Reference 

Unreinforced plaster 2.3 78.11 0.49 
This study 

CL 1.8 - 4.8 120 - 177.67 0.25 - 0.98 

Hemp 2.8 - 3.9  -   -  
[12] 

Flax 3.6  -   -  

Retama monosperma 1.12  -  5.88 - 11.68 [4] 

Sisal 0.38  -  0.39 
[66] 

Kenaf 0.3  -  0.33 

Abaca 2.46 - 2.95  -   -  [67] [68] 

WF 0.73 - 1.39 93 - 538 0.79 - 2.61 
[65] 

POF 0.5 - 0.88 70 - 355 0.52 - 2.07 

 
a plaster matrix, reinforced with plant fibers. On the other hand, the mechanical 
resistance of the composite of the present study is always above the values of the 
fibers usually used. For compressive strength, CL offers superior mechanical 
strength to most composites in the literature. 

6. Conclusions 

In this work, the effect of reinforcement rate and fiber length of CL stem on the 
physical and mechanical properties of gypsum matrix composites was studied. 
The mechanical adhesion between the CL fibers and the plaster is ensured 
thanks to the rough surface topology of the CL fibers. It appears that, except for 
configuration D, the rate of water absorption increases with the percentage and 
length of the fibers. The water absorption rate of loaded and unloaded samples 
ranges from 17% to 130.48% respectively. Sample A1.5 absorbs less than un-
reinforced plaster. The bulk density for each specimen was determined and the 
average taken. The density of the reinforced composite varies between 623 
Kg/m3 and 937.273 Kg/m3, against 1160Kg/m3 for the unreinforced plaster. Plant 
fibers therefore tend to reduce the density of the plaster. For the mechanical 
characterization, did the three-point bending and compression test. The mod-
ulus of elasticity in bending increases when the percentage and length of the fi-
bers are high. Variant values are obtained between 124.8 MPa and 177.67 MPa 
against 78.11 MPa for the plaster alone respectively. The previous trends hold 
true for flexural fracture toughness. Thus, for unreinforced plaster, it is 4.84 
MPa and varies between 1.8 MPa and 4.8 MPa for reinforced plaster. The com-
pressive strength of reinforced plaster is superior to unreinforced plaster, but not 
for all samples. Specimens A2.5, C2.5 have respectively values of 0.96 MPa and 
0.78 MPa respectively against 0.49 MPa for plaster alone. 
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Overall, it was concluded that reinforcement of gypsum with CL fibers is ef-
fective in increasing the physical (lightness and water/moisture absorption) and 
mechanical (ORM and compressive strength of A2.5 and C2.5 configurations) 
properties of gypsum. Future work in this area should aim to optimize CL fiber 
reinforcement, investigate the durability of the reinforcement system, and apply 
other natural fiber architectures for reinforcement. 
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