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Abstract 
The ellipse and the superellipse are both planar closed curves with a double 
axis of symmetry. Here we show the isoconcentration contour of the simpli-
fied two-dimensional advection-diffusion equation from a stable line source 
in the center of a wide river. A new two-parameter heteromorphic elliptic 
equation with a single axis of symmetry is defined. The values of heights, at 
the point of the maximum width and that of the centroid of the heteromor-
phic ellipse, are derived through mathematical analysis. Taking the compres-
sion coefficient θ = b/a = 1 as the criterion, the shape classification of H-type, 
Standard-type and W-type for heteromorphic ellipse have been given. The 
area formula, the perimeter theorem, and the radius of curvature of hetero-
morphic ellipses, and the geometric properties of the rotating body are sub-
sequently proposed. An illustrative analysis shows that the inner contour curve 
of a heteromorphic elliptic tunnel has obvious advantages over the multiple- 
arc splicing cross section. This work demonstrates that the heteromorphic el-
lipses have extensive prospects of application in all categories of tunnels, liq-
uid transport tanks, aircraft and submarines, bridges, buildings, furniture, and 
crafts.  
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1. Introduction 

The ellipse is a common planar closed curve with a double axis of symmetry, 
belonging to the family of conic curves represented by a quadratic equation [1]. 
The general Cartesian notation for the form comes from the French mathemati-
cian Gabriel Lamé, who generalized the equation for the ellipse. A superelliptic 
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equation (i.e., |x/a|n + |y/b|n = 1, where n, a, and b are positive numbers) is a 
closed curve resembling the ellipse with three parameters. A superellipse, simi-
larly to the ellipse, is symmetric about its two semi-axes, but differs in its overall 
shape [2] [3]. The Danish author and scientist Piet Hein have dealt with the su-
perellipse in great detail, especially by using the curve for architectural objects 
such as motorway bridges [4]. His proposal won the design challenge for a 
roundabout in the Sergels Torg city square in Stockholm, Sweden. The Melior 
font, designed by Hermann Zapf, has been based on this curve [3]. The egg curves 
(i.e., [x/a]2 + [y/b]2t(x) = 1, where t(x) is a function of x) have been discovered by 
Florian Blaschke [5]. An oval is a closed plane line that is shaped like an ellipse 
or like the egg of a hen. The hen’s egg is smaller at one end and has only one axis 
of symmetry [6]. Reference [7] egg-shape equation (i.e., [x/a]2 + [y/(ky + b)]2 = 
1, |k| < 1) have three parameters. These can develop the shape of a hen egg, 
which changes the equation of an oval a little. As important mathematical tools, 
these curvilinear equations play an important role in daily production and life. 

This study is based on the isoconcentration contour equation of simplified 
two-dimensional advection-diffusion in rivers. The scope of this study encom-
pass 1) the analysis of the height in the direction of the axis of symmetry and the 
width in the direction of asymmetry, 2) determine a new equation for a hetero-
morphic elliptic equation with two parameters, 3) compare the heteromorphic 
ellipse with an ellipse, and 4) investigate the geometric properties and applica-
tion prospects of the heteromorphic ellipse and the rotating body. The results 
can provide theoretical support for the popularization and application of the he-
teromorphic elliptic equation. 

2. Background of the Heteromorphic Elliptic Equation 

Reference [8] has given the concentration distribution from a uniform-intensity 
line source in the center of a wide river based on the simplified two-dimensional 
advection-diffusion transport equation. The resulting equation is given as 

2

( , ) exp( )
44π yy

m UyC x y
E xH E Ux

= −                (1) 

where x is the longitudinal coordinate in the stream-wise direction, and y is the 
transverse coordinate perpendicular to the flow and pointing towards the river 
bank. The origin of the coordinate system is the discharge point at the center of 
the river, m the mass discharge rate of the passive scalar, U the average velocity 
of the river, H the average water depth, and Ey the transverse diffusion coeffi-
cient. 

According to Equation (1), for a constant concentration C = Ca, the maximum 
length Ls, the maximum half-width bs, and the corresponding longitudinal coor-
dinate Lc of the area surrounded by the contour line are given as [9] 

21 ( )
4s

y a

mL
E U HCπ

=                       (2) 
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Wu et al. [10] have used Ls and bs in Equation (2) and Equation (3) to make x 
and y dimensionless in Equation (1) with C (x, y) = Ca and obtained the dimen-
sionless formula of the isoconcentration curve (namely Wu’s curve) as  

2( ) e ln( )
s s s

y x x
b L L

= −                      (5) 

Previous studies have indicated that Wu’s curve as represented by Equation 
(5) is similar to the ellipse, whereas it has only a single axis of symmetry. Since it 
is derived from advection and diffusion of a passive scalar and the transport of 
momentum, heat, and mass have certain similarities in flow, the authors have 
surmised that Wu’s curve could exhibit good mechanical properties analogous to 
that of the shape of the eggshell, and hence enhancing the significance of the 
Wu’s curve. For the sake of describing this metaphysical concept by a represen-
tational image, Wu’s curve is referred to here as a “heteromorphic ellipse”. 

3. Comparison of the Heteromorphic Ellipse with the Ellipse 

Following Equation (5), the heteromorphic ellipse has its maximum dimension 
along the axis of symmetry in the x-direction. Hereafter, for simplicity, the scale 
in the x and y axes will be called “height” and “width”, respectively. Defining 
such a length scale as the maximum height of the heteromorphic ellipse, 2a = Ls, 
and the maximum width as 2b = 2bs, the new equation of the heteromorphic el-
lipse as shown in Figure 1 can be obtained using Equation (5) as 

2 e( ) ln( )
2 4 2 2
y x x
b a a

= − , ( 0, 0a b> > )                (6) 

 

 
Figure 1. Comparison of the heteromorphic ellipse and an ellipse with the same long and 
short axes. 
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The median line of the heteromorphic ellipse is located at the midpoint of the 
axis of symmetry and it is a line segment that connects two side boundary points 
that is parallel to the asymmetric axis. Alternatively, the height of the median 
line of the heteromorphic ellipse is h = a. From Equation (4), it can be concluded 
that the maximum width is located at the height Lc/2a = 1/e ≈ 0.368. This value 
is 26.42% less than the median line relative height.  

It divides the whole geometry into upper and lower parts at the approach to 
the golden section of the line. The heteromorphic ellipse is symmetrical about 
the x-axis and ranges from 0 ≤ x ≤ 2a and −b ≤ y ≤ b. The four vertices at the 
bottom, top, left, and right boundaries are at (0, 0), (2a, 0), (1/e, −b) and (1/e, b), 
respectively (Figure 1). The heteromorphic ellipse looks like a deformed ellipse. 
Figure 1 also compares the heteromorphic ellipse with an ellipse of the same size 
along the long and short axes and centered at x/2a = 0.5, y/2b = 0. 

The two vertices on the axis of symmetry x are coincident, with the same 
height and width, in the heteromorphic ellipse and the ellipse (Figure 1). On 
each side of the symmetric x-axis, the heteromorphic ellipse intersects the ellipse 
at x/2a ≈ 0.436, y/2b ≈ ±0.496. Above these intersections, the heteromorphic el-
lipse is narrower than the ellipse, whereas below the intersections, it is wider. 
Alternatively, the heteromorphic ellipse presents certain distinguishing features, 
viz. wide lower part, flat base, narrow upper part, and slightly pointed top. These 
geometric features lead to a lower centroid with obvious advantages for upright 
stability. 

4. Geometric Properties of the Heteromorphic Ellipse 
4.1. Area 

The integral of Equation (6) is determined on x ∈ [0, 2a], the formula for calcu-
lating the area of the heteromorphic ellipse be derived as 

2 2

0 0

e2 2 ln( )d 4 e ln( )d( )
4 2 2 2 2 2

a ax x x x xS b x ab
a a a a a

= − = −∫ ∫      (7) 

By performing variable substitution so that x/2a = ζ, the upper limit of the 
integral becomes one, and the result is given as 

1

0
4 e ln( )d (2 )(2 )S ab a bζ ζ ζ µ= − =∫               (8) 

where 
1

0
e ln( )dµ ζ ζ ζ= −∫  is called the “area coefficient”. Hence, the area 

formula for the heteromorphic ellipse states that its area is equal to the product 
of the area coefficient, the height, and the width. 

Let η = ζ1.5, and by substituting the area coefficient formula, the definite 
integral can be obtained directly that the area coefficient can be given as 

3 3
1 11.5 12 2
0 0

2 2 2e ln( )d ( ) e ln( )d
3 3 3

µ ζ ζ η η
− −= =∫ ∫           (9) 

An integral table can be used to evaluate 
1 1
0

ln( )d π 2η η− =∫ , which is 
substituted into Equation (9) to give 
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1.52 πe( ) 0.795
3 2

µ = ≈                     (10) 

This value is 1.27% larger than the area coefficient (=π/4) of the ellipse. 

4.2. Centroid Coordinate 

The centroid refers to the geometric center of a heteromorphic ellipse, and for 
objects of uniform density, the center of mass and the centroid are coincident. 
For a heteromorphic ellipse with only one axis of symmetry, the centroid must 
be on its axis of symmetry. To identify the specific point on the axis of symme-
try, it is necessary to determine the area moment by calculating the area mo-
ments for the asymmetric axis. According to the principle that the total area 
moment is equal to the sum of each area moment 

22
c 0 0

ed 16 ln( )d( )
2 4 2 2 2

S a
m

x x x xS x x S a b
a a a a

⋅ = = −∫ ∫          (11) 

Using variable substitution, letting x/2a = ζ, and setting η = ζ2.5, the upper lim-
it of the integral is constant, and the upper limit of the integral becomes one. By 
substituting this into Equation (11), the centroid coordinate of the heteromor-
phic ellipse can be obtained as 

5 5
1 11.5 1.5 12 2

c 0 0

2 e 2 2 e 2( ) ln( )d ( ) ln( )d
5 5m m

a ax ζ ζ η η
µ µ

− −= =∫ ∫     (12) 

Using an integral table to evaluate 
1 1
0

ln( )d π 2η η− =∫  and then substitut-
ing Equation (10) into Equation (12), we get 

1.5 1.5
c

πe 2 3( ) ( ) (2 ) 0.465(2 )
5 5m

ax a a
µ

= = =             (13) 

Therefore, the centroid of a heteromorphic ellipse is located at the point on 
the axis of symmetry where the relative height coordinate is xc' = xc/2a = 0.465. 
The height of this point is 7.05% lower than the median line (ellipse centroid) 
height, and for uniform-mass objects, the centroid of the heteromorphic ellipse 
is lowered by 7.05%. Hence, the vertical stability of a heteromorphic ellipse is 
better than that of an ellipse. 

4.3. Compression Coefficient and Shape Classification 

The compression coefficient of a heteromorphic ellipse is defined as the ratio of 
the width of the asymmetric axis and the height of the axis of symmetry (the ra-
tio of width to height being θ = 2b/2a = b/a (θ > 0)). Figure 2 shows certain he-
teromorphic ellipse shapes with θ = 0.25, 0.67, 1.00, and 1.50. 

Under different compression coefficients, the shape of a heteromorphic ellipse 
seems to follow natural patterns (Figure 2). The shapes of the rotating body of 
these figures are as follows: Figure 2(a) takes the shape of a corn cob, Figure 
2(d) that of round bread, and Figure 2(b) and Figure 2(c) resemble the shape of 
strawberry and apple, etc. 
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(a)           (b)                   (c)                          (d) 

Figure 2. Heteromorphic ellipses with different compression coefficients. (a) θ = 0.25; (b) 
θ = 0.67; (c) θ = 1.00; (d) θ = 1.50.  
 

To note, the compression coefficient can reflect the shape characteristics of 
the heteromorphic ellipse. Accordingly, the shape of the heteromorphic ellipse 
can be classified for the cases of: 1) 0 < θ < 1, where the width of the heteromor-
phic ellipse is less than the height, and the ellipse is of leptosome type (H-type), 
2) θ = 1, where the width of the heteromorphic ellipse is equal to the height, 
which is called the Standard-type, 3) θ > 1, where the width of the heteromor-
phic ellipse is greater than the height, and the ellipse is of pyknic type (W-type). 

Practical experience reveals that as compared with ellipses with a double axis 
of symmetry, whose shapes have only one axis of symmetry with one end thin 
and the other end having a large oval shape, are more common in nature. 

4.4. Perimeter 

According to the integral of the plane curve arc length in higher mathematics, 
the perimeter integral formula of a heteromorphic ellipse is given as 

2 2
0

2 1 d
a

L y x′= +∫                      (14) 

Taking the derivative on both sides of Equation (6) results in the following 

e [1 ln( )] ln( )
2 2 24

b x x xy
a a aa

′ = − + −             (15) 

Substituting Equation (15) into Equation (14), setting x/2a = ζ, and noting 
that b/a = θ, the upper limit of the integral becomes 1, and the integral formula 
for the heteromorphic elliptic perimeter is given as 

2 21

0

4 e (1 ln )1 d ( ) ( )
1 16 ln hL a b T a bθ ζ ζ

θ ζ ζ
+

= − + = +
+ ∫       (16) 

where 
2 21

0

4 e (1 ln )1 d
1 16 lnhT θ ζ ζ

θ ζ ζ
+

= −
+ ∫  is called the “heteromorphic elliptic  

coefficient”. The theorem regarding the perimeter of a heteromorphic ellipse can 
be stated as, the perimeter is equal to the product of the heteromorphic elliptic 
coefficient and the sum of the half-height and half-width of the heteromorphic 
ellipse. 

The formula for the heteromorphic elliptic coefficient shows that this coeffi-
cient (Th) is a function only of the heteromorphic elliptic compression coeffi-
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cient (θ). In the interval of [0.01, 100], a series of θ values are given, and elliptic 
coefficients (Th) can be calculated by using a numerical integration method. A 
series of corresponding Th values are obtained, and the variation between the 
heteromorphic elliptic coefficients (Th) and compression coefficients (θ) can be 
determined, as shown in Figure 3. Under the same conditions, the variation re-
lationships of elliptic coefficients are also given for comparison with the hete-
romorphic ellipse.  

The results from calculation coupled with Figure 3 indicate that the hetero-
morphic elliptic coefficient of the Standard-type heteromorphic ellipse with equal 
width and height (θ = 1) is Th = 3.191, is 1.58% larger than the elliptic coefficient 
(=π) under the same conditions. Further analysis shows that the ratio of the area 
coefficient of the Standard-type heteromorphic ellipse to the heteromorphic el-
liptic coefficient is 0.249. This value is only 0.31% lower than the ratio of these 
items in a circle, which shows that the area of a Standard-type heteromorphic el-
lipse is largest in the case of a certain perimeter value. In Figure 3, the elliptic 
coefficients (dashed line) are symmetric about the compression coefficient θ = 1 
in logarithmic coordinates. For a given aspect ratio, the heteromorphic elliptic 
coefficient of the H-type (compression coefficient 0 < θ < 1) is slightly larger 
than that of the W-type (θ > 1). When θ < 0.1, the relative difference between the 
heteromorphic elliptic coefficient and the elliptic coefficient is less than 5.0‰, 
and when θ > 10, the relative difference is less than 1.2‰. 

4.5. Radius of Curvature 

In principle, the curvature indicates the bending degree of a curve at a certain 
point, and the curvature is greater for a greater value of the bending degree of 
the curve. The reciprocal of the curvature is the radius of curvature. The radius 
of curvature is also used to describe the bending degree of a curve at a certain 
point, and the radius of curvature is smaller for greater values of the bending 
degree of the curve. The radius of curvature of the heteromorphic ellipse is 
closely related to the size, and the heteromorphic ellipse and the radius of the  
 

 

Figure 3. Comparison of heteromorphic ellipse coefficients and ellipse coefficients. 
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corresponding point of the curve is larger for smaller values of the bending de-
gree of the curve. To facilitate the analysis of the variation rule of the curvature 
radius of a heteromorphic ellipse, the Standard-type heteromorphic ellipse with 
2a = 2b = 1 is considered, and by Equation (6), the corresponding equation for a 
heteromorphic ellipse can be given as 

2 e ln( )
4

y x x= −                       (17) 

The first derivative is given as 

e [1 ln( )]
8

y x
y

′ = − +                     (18) 

The second derivative is given as 
2e 8

8
xyy

xy
′+′′ = −                      (19) 

The formula for radius of curvature is 
2 3/2(1 )y

y
ρ

′+
=

′′
                     (20) 

The definition of the domain is 0 ≤ x ≤ 1, −0.5 ≤ y ≤ 0.5. Considering the 
symmetry of the heteromorphic ellipse, Figure 4 shows a plot of the half-curves 
of y, y', y'', and ρ for analysis.  

In Equation (18) and Equation (19), and Figure 4, it is clear that the hetero-
morphic ellipse y = f (x) has first and second order continuous derivatives on the 
interval (0, 1). It is known from higher mathematics that both the curves of the 
heteromorphic ellipse and the first derivative are smooth. 

From Equation (20) and Figure 4, it is apparent that the radius of curvature of 
the heteromorphic ellipse on the interval [0, 1] is continuous and presents a con-
tinuous variation over a”2” shape with x. In other words, as x → 0, the radius of 
curvature ρ → ∞, and with a gradual increase in x, ρ decreases rapidly, and at x = 
0.043, ρ quickly reaches a minimum value of 0.248. With further increases in x, ρ 
gradually increases, and at x = 0.678, ρ reaches a maximum of 1.646. Subse-
quently, ρ gradually decreases with increasing x at x = 1 and ρ = 0.340. 
 

 

Figure 4. The half-curves of heteromorphic ellipse y, y', y'', and ρ with x. 
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Note that as the height, width, and compression coefficient of the heteromor-
phic ellipse vary, the radius of curvature changes continuously following a “2” 
shape, but the value of the radius of curvature and the position of the extreme 
point will change correspondingly. 

5. Geometric Properties of the Heteromorphic Elliptical  
Rotating Body 

5.1. Rotating Body Volume 

Using definite integral, the volume of the body generated by revolving the hete-
romorphic ellipse (Equation (6)) through an angle of 360 degree around the x 
axis (Symmetry axis) is 

2 22 2
0 0

π d 2πe ln( )d( )
2 2 2

a a x x xV y x ab
a a a

= = −∫ ∫           (21) 

By performing variable substitution so that x/2a = ζ, the upper limit of the 
integral becomes 1, (An integral table can be used to evaluate  

1

0
ln d 1/ 4ζ ζ ζ = −∫ ) and the result is given as 

12 2
0

πe2πe ln( )d
2

V ab abζ ζ ζ= − =∫                (22) 

This value is 1.94% larger than the volume of the ellipsoid. 

5.2. Surface Area of Rotating Body 

Using definite integral, the surface area of the body generated by revolving the 
heteromorphic ellipse, given in Equation (6), through an angle of 360 degree 
around the x axis is expressed as 

2 2
0

2π 1 d
a

aS y y x′= +∫                    (23) 

Substituting Equation (6) and Equation (15) into Equation (23), setting x/2a = 
ζ, and noting that b/a = θ, the upper limit of the integral becomes 1 and the re-
sult is given as 

2 21

0

e e (1 ln )8π ln 1 d ( )4π
4 16 lnaS ab abθ ζζ ζ ζ λ θ

ζ ζ
+

= − − =∫      (24) 

where 
2 21

0

e e (1 ln )( ) 2 ln 1 d
4 16 ln

θ ζλ θ ζ ζ ζ
ζ ζ
+

= − −∫           (25) 

λ(θ) is defined as the “surface area coefficient” of the rotating body of hete-
romorphic ellipse around the x axis. Taking a series of values in interval (0.1 ≤ θ 
≤ 10.0) and integrating Equation (25) by numerical integration method, the re-
sults are plotted using the “+” points as shown in Figure 5.  

According to Figure 5 and the calculations, the surface area coefficient of the 
rotating body of heteromorphic ellipse around the x axis shows a monotonic 
rising trend from 0.800 to 5.161 in interval (0.1 ≤ θ ≤ 10.0). The surface area  
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Figure 5. Variation curves of the surface area coefficient and the surface area ratio of the 
rotating body with the compression coefficient. 
 
coefficient of the rotating body of Standard-type heteromorphic ellipse around 
the x axis (θ = 1) is λ(1) = 1.0212, indicating that the surface area of this rotating 
body is 2.12% larger than that of a sphere with radius r (=a = b). The fitting 
curve equation of the surface area coefficient λ(θ) is given as 

1.099 0.08060.3681 0.6559λ θ θ −= +                 (26) 

The correlation coefficient R2 = 0.9999, and the absolute values of the relative 
errors are less than 1.02%. 

5.3. Surface Area Ratio of Rotating Body 

Definition of the “surface area ratio” of the rotating body of heteromorphic el-
lipse around the x axis is as follows. Under a same volume of the rotating body, 
the ratio of Sa, which is the surface area of the rotating body of heteromorphic 
ellipse around the x axis with different θ, to Sa0, which is the surface area of the 
rotating body of Standard-type heteromorphic ellipse around the x axis with θ = 
1, is the surface area ratio γ(θ) of the rotating body of heteromorphic ellipse 
around the x axis is given as 

1 3
0

( )
(1)

a

a

S
S

λ θγ
λ θ

= =                       (27) 

The results of calculation are shown as the “×” points in Figure 5. 
According to Figure 5 and the calculations, in interval (0.1 ≤ θ ≤ 10.0), the 

surface area ratio of the rotating body of heteromorphic ellipse around the x-axis 
presents a curve change rule in the shape of “√”. The minimum surface area ra-
tio γmin = 0.999977 appears at compressibility θ = 1.011561, i.e., the surface area 
ratio of the rotating body of Standard-type heteromorphic ellipse around the x 
axis, where γ0 = 1 is not the minimum value of surface area ratio. On the left side 
of the minimum surface area ratio γmin, γ(θ) increases with decrease of compres-
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sion coefficient, whereas on the right side, γ(θ) increases with increase of com-
pression coefficient. The fitting curve equation of surface area ratio γ(θ) is given 
as 

0.7958 0.39110.334 0.671γ θ θ −= +                   (28) 

The correlation coefficient R2 = 0.9995, and the absolute values of the relative 
errors are less than 0.98%. 

As per the “√” curve Equation (28) of surface area ratio of the heteromorphic 
elliptical rotating body, the compression coefficient of the corncob is about 0.25, 
and its surface area ratio is 1.26. Further, the compression coefficient of sun-
flower disk is about 5.50, and its surface area ratio is 1.64, whereas the compres-
sion coefficients of apple, pears, and other fruits are 0.80 - 1.25, and their surface 
area ratios are proximate to the minimum value of 1.00 (less than 1.01). 

6. Case Analysis and Application Prospects 
6.1. Case Analysis 

Taking a traffic tunnel as a sample case, an application and comparative analysis 
have been carried out. According to the relevant provisions of China’s highway 
tunnel design code, Wang have given the design limits (maximum size of 1025 
cm × 500 cm) of highway tunnels and the inner contour design of a three-heart-curve 
round tunnel with a unidirectional double-lane design speed of 80 km/h, as 
shown in Figure 6 [11]. Table 1 shows the parameters of the three-heart-curve 
round tunnel. 

According to Figure 6 and Table 1, in addition to the inverted arch of backfill 
area, a three heart curve round tunnel is composed of three arc centers, namely, 
crown arch, right arch, and left arch. It is composed of a crown arch and two 
side arches. 
 

 

Figure 6. Design of heteromorphic elliptical section for a tunnel project. 
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Table 1. Parameters of the three-heart-curve round tunnel. 

Center Number Radius (cm) 
Center Coordinates 

Center Angles Remarks 
x (cm) y (cm) 

1 550 275 0 2 × 103˚45'24'' Crown arch 

2 120 172.7 417.7 61˚50'53'' Right arch 

3 120 172.7 −417.7 61˚50'53'' Left arch 

- 1800 1800 0 2 × 14˚23'43'' Invert arch 

 
If the heteromorphic ellipse (Wu’s curve) is used as the inner contour of the 

tunnel and the structural boundaries are completely contained, the optimal de-
sign can be implemented according to the minimum cross-sectional area of the 
tunnel to obtain the maximum width W = 1100 cm and the maximum height H 
= 835 cm for the cross section of the tunnel inner contour. Figure 6 shows the 
inner contour design for a heteromorphic elliptical tunnel.  

The main advantages and disadvantages of the inner contour of a heteromor-
phic elliptical tunnel and the three-heart-curve round cross section have been 
compared and analyzed as given below.  

1) The inner contour of a heteromorphic elliptical tunnel requires only two 
design parameters, whereas the three-heart-curve round cross section requires 
four independent parameters. The former is a trivial one for design and optimi-
zation, easy to implement, and enables error control. 

2) Substituting Formula (10), W = 1100 cm and H = 835 cm into Formula (8), 
the inner contour area of the heteromorphic elliptical tunnel is obtained as 

( )( ) 22 2 0.795 73.05 mS a b WHµ= = = , 

and following the calculations from a geometric figure, the cross-sectional area 
of the three-heart-curve round tunnel is 74.04 m2. The former can save 1.34% of 
the earthwork of excavation for a long-distance tunnel. 

3) From the compression coefficient θ = W/H = 1.317, the heteromorphic el-
liptic coefficient Th = 3.200 can be calculated. Then the inner contour perimeter 
of the heteromorphic elliptical tunnel is L = Th(W + H)/2 = 30.96 m, and as cal-
culated from the geometric figure, the cross-sectional perimeter of the 
three-heart-curve round tunnel is 31.56 m. The former can save 1.88% in tunnel 
support and lining construction material, which is beneficial for reducing project 
investment. 

4) The maximum height of the inner contour of the heteromorphic elliptical 
tunnel is H = 835 cm and the maximum height of the cross section of the 
three-heart-curve round tunnel is H = 825 cm. The maximum widths of the two 
tunnel cross sections are equal. Figure 6 shows that the top arch of the inner 
contour of the heteromorphic elliptical tunnel is slightly higher, which helps to 
increase tunnel ventilation and to withstand the pressure at the top of the tunnel. 
Moreover, the inner contour of the heteromorphic elliptical tunnel overcomes 
the convexities of the arch footing and the cross section of the three-heart-curve 
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round tunnel, which helps to save the quantity of backfill concrete required for 
the inverted arch. 

5) There is a continuous second-order derivative in the inner contour of the 
heteromorphic elliptical tunnel, and the radius of curvature shows a continuous 
change alonga”2” shape with the height of the cross section. However, the three 
values of the radii of curvature in the cross section of the three-heart-curve 
round tunnel is apparently distorted at the connection point (tangent point). 

6.2. Application Prospects 

In human civilization, patterns develop following two basic geometric shapes, 
viz. one is straight-line and rectangular, and the other is an ellipse (including 
circle and circle arcs). The straight line makes things easy to reconcile with the 
shortest distance, whereas the ellipse gives a flexible and easily moving feeling, 
both physically and psychologically. For centuries, designers have been limited 
by this “round or square” classification of thinking. Custom-developed hyper- 
elliptical shapes have not been used until Piet Hein’s design [4]. The discovery of 
the equation of the heteromorphic ellipse (Wu’s curve) undoubtedly have ex-
panded our scope to choose graphic forms. 
 Tunnel 

The tunnel is an engineering structure buried in an earth stratum and is a 
form of human use of underground space. For more than a century, due to the 
lack of suitably shaped curves, the inner contours of existing tunnels were main-
ly characterized by three-centered, four-centered, and five-centered circles and 
shapes created by arc splicing. Taking a four-centered circular tunnel cross sec-
tion as an example, there are five independent variables: radius r1, r2, r3, and the 
central angles φ1, φ2 [12]. The inner contour of a tunnel formed by multiple cir-
cular arcs can provide continuity and smoothness of the curve at the connection 
point (tangent point).However, the first derivative is continuous and not smooth, 
but the second derivative, where the curvature distortion and stress concentra-
tion phenomena occur, is discontinuous [13]. From the analysis as shown in 
Section 4.5, it is obvious that the inner contour of a heteromorphic elliptical 
tunnel has obvious advantages as compared with the cross section created by 
multiple arc splicing. The inner contour of a heteromorphic elliptical tunnel and 
its derivatives has better continuity, differentiability, smoothness, and integrity. 
 Liquid transport tank 

The cross section of the common liquid transport tank is a circle, an ellipse, or 
a hyper-elliptical shape between an ellipse and a rectangle. If the tank is liq-
uid-filled, the position of the cross-sectional centroid (center of gravity) is the 
same as the median line. At the same width and height for heteromorphic el-
lipses and ellipses, the centroid position of a cross section of the heteromorphic 
ellipse is 7.05% lower than the median line (the ellipse centroid), which can 
greatly improve the safety of liquid tanks in vehicle driving, especially on curves. 
The heteromorphic ellipse is wider in the lower part and flatter at the bottom 
than a circle or an ellipse, and the required bracket is short, has a small force to 
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resist, and easy to fix. Therefore, the heteromorphic ellipse has a good stability 
on a vehicle chassis, and it is an ideal cross-sectional shape for a liquid transport 
tank. 
 Airplanes and submarines  

The cross sections of common airplanes and submarines are circular. Under 
the same width and height conditions, the lower space of a heteromorphic ellipse 
is larger than that of a circle, which increases the available space for equipment 
installation and cargo loading, and the center of gravity of airplanes can be lo-
wered accordingly, which is beneficial for flight stability. For submarines, the 
inverted cross section of the heteromorphic ellipse is used, with which the upper 
part of the submarine is wider than the circular cross section. Hence, it is easy to 
decorate the offices and living spaces, and the lower part of the submarine can be 
used for equipment installation and power. The center of buoyancy of an in-
verted heteromorphic ellipse is 7.05% higher than that of a circle, which is fa-
vorable for keeping submarines in a stable equilibrium state. This is a new field 
worth studying by researchers in related disciplines and applications. 
 Bridges, buildings, furniture, and handicrafts 

Like the superellipse, the heteromorphic ellipse (Wu’s curve) can also be used 
in the design of bridge piers, square buildings, furniture, and handicrafts. Exam-
ples include beds, tables, silverware, dishes, vases, candlesticks, casseroles, soup 
pots, teapots, and wine glasses. 

It has to be emphasized that the heteromorphic ellipse is invented based on 
the isoconcentration-curve formula as the solution of a simplified advection-diffusion 
transport of a constant point source. If considering the pedicle as a point source 
during fruit growth, it is intuitively obvious that the shape of the fruit such as the 
corn cob, apple, persimmon, pineapple and pear, is very similar or close to the 
heteromorphic ellipse: their shape is not only affected by the type of species and 
natural conditions (climate and sunlight, for example), but also constrained by 
the isoconcentration condition during nutrition transport. Therefore, hetero-
morphic ellipse can also be a research object of great concern for the botanical 
research community. 

7. Conclusions 

1) An equation for anew heteromorphic elliptic (Wu’s curve) with two para-
meters for x-symmetry is defined. In the heteromorphic ellipse, the correspond-
ing height of the maximum width and the height of the centroid position are 
given. The shapes of heteromorphic ellipses are classified into a heteromorphic 
ellipse, which belongs to the H-type with a compression coefficient of 0 < θ = b/a 
< 1, standard-type with θ = 1, and the W-type with θ > 1. 

2) The area formula can be given as, the area of a heteromorphic ellipse is 
equal to the product of the area coefficient, height, and width, viz. S = μ(2a)(2b). 
Besides, the perimeter theorem of the heteromorphic ellipse can be stated as, pe-
rimeter of the heteromorphic ellipse is equal to the product of the heteromor-
phic elliptic coefficient and the sum of the half-height and half-width of the he-
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teromorphic ellipse, viz. L = Th(a + b). 
3) It has been shown that the first- and second-order derivatives of the hete-

romorphic ellipse are continuous, indicating that both the heteromorphic ellipse 
and its first-derivative curve are smooth, and the variation in the radius of cur-
vature with the height coordinate x follows a continuous “2” shape. Thereafter, 
the geometric properties of the rotating body are proposed. 

4) The case analysis shows that, when compared with the three-heart-curve 
round cross section, the inner contour of a heteromorphic elliptical tunnel has 
the advantages of fewer design parameters, a continuous radius of curvature, 
smaller tunnel excavation area, shorter circumference of support and lining, high-
er cavern (which favors ventilation), and smaller backfilling quantities. 

5) The analysis also shows that the heteromorphic ellipse and its derivatives 
have good continuity, differentiability, smoothness, and integrity, which give 
these shapes broad application prospects in the design of tunnels, liquid trans-
port tanks, planes, submarines, bridges, buildings, furniture, and crafts. 
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