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Abstract 
During metal machining, the satisfactoriness of cost-quality-time matrix 
convergence effectively depends on the supreme selection of cutting parame-
ters. This study investigated the energy use minimisation and quality surface 
generation through optimised cutting parameters application, as sustainabili-
ty enhancement during dry turning of EN19 material. Cutting parameter op-
timisation is a serious challenge confronting the machining industry as they 
strive to achieve low energy use and better component quality generation 
from their operations. The utility material, EN19, is a medium-carbon low 
alloy steel which typically gets applied in the manufacturing of multiple pro-
filed cylindrical machine tool, rail locomotives and motor vehicle component 
parts, inter alia. Taguchi Full Factorial experimental plan was used to orga-
nise the empirical experiments. ANOVA and the main effects plot sig-
nal-to-noise ratio optimisation analysis were utilised in the study to establish 
the influence of process parameters on the response parameters—surface 
roughness and energy use. The aim was to investigate and determine the cor-
relation of the machining strategy parameters with the outcome of low energy 
use and quality surface texture of the components as the cutting parameters 
were varied, and optimised for minimum surface roughness and energy use. 
Results of the extensive experimental study, produced optimum cutting 
speed, rake angle variation and feed rate which respectively influence the re-
sponse parameters positively for energy use minimisation and improved sur-
face quality. Validation experiments confirmed model findings. 
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1. Introduction 

Energy consumption is the main concern of the manufacturing industries [1]. 
Machining is one of the most fundamental energy consuming manufacturing 
operations which is broadly used in the production of discrete products such 
as components made of EN19 alloy steel. Surface roughness, of machined 
components, has a huge influence on finishing costs and the perceived quality 
of machined products, notably as considered from a sustainability point of 
view. 

According to Pervaiz [2], during manufacturing operations, energy consump-
tion forms one of the key parameters which play an important role towards de-
termining the economic and environmental burden of the process. Yet machin-
ing consumes significant energy during the manufacturing process. Thus, the 
ever increasing cost of energy coupled with the steepening global competition 
against the increasing demand by customers for more efficient and cheaper 
products has placed tremendous pressure on the manufacturing enterprises to 
radically improve machining energy use efficiency and surface quality genera-
tion capabilities, in order to magnify the competitiveness and profitability of the 
business. Hence, an analysis and understanding of machining systems and opti-
misation of the machining parameters for energy use at process level and surface 
quality generation, before the actual cutting begins, has become very important 
in the metal machining business. 

Sustainability generally relates to the feasibility of continuing with a defined 
pattern of behaviour for an indefinite duration of existence, [3] [4] [5]. The role 
played by manufacturing is indispensable within the global economy operation. 
Machining forms one of the oldest major industrial manufacturing processes 
and is an extremely important applications operation which allows the creation 
of complex-shaped items for many purposes. As such machining is regarded as 
the most widely used important manufacturing process for shaping a variety of 
components [6], especially in the manufacture of discrete mechanical industrial 
workpieces and components such as EN19 cylindrical components required for 
the rail and the automobile industries. Estimates project that 15% of the value of 
all mechanical components manufactured, globally, comes from machining op-
eration [7]. Machining allows the forming of intricate-shaped items and the 
generation of desired surface finish quality of precision components. In the same 
vein, machining involves a number of sustainability factors and has potentially 
significant environmental impacts noting that as a manufacturing process it in-
volves controlled application of energy to convert raw materials into finished 
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goods. 
EN19, also known as 708M40 709M40/AISI 4140 is a high quality alloy steel 

[8]. It is a high strength utility engineering material commonly used for high 
load bearing applications in the automotive, oil and gas industries for making 
gears, shafts, high tensile strength studs and bolts, rifle barrels, propeller shaft 
joints, pins, breech mechanisms for small arm parts, induction hardened track 
pins, spindles and rods, inter alia parts. It is a material which possesses high ten-
sile strength, good ductility, good wear and shock resistance, and is characte-
rized as a difficult-to-machine material, which can also be machined to highly 
precise dimensional tolerances. Its application properties can be further en-
hanced by post machining operations such as heat treatment e.g. induction har-
dening. Mechanical machining of EN19 material components, is widely used in 
manufacturing industries and represents significant demand for energy [9] [10]. 
Energy consumption rate and surface roughness present two essential machina-
bility performance evaluation metrics considered and which require close atten-
tion, by the machining based manufacturing industries. The importance of these 
factors is amplified by the need for the machining industries, of EN19 material, 
to manufacture low cost high quality components in short periods of time dur-
ing which production rate and material removal rate are significant considera-
tions [11]. Sustaining the quality consistency, of machined components, during 
turning operation is a key challenge faced by the discrete cylindrical EN19 parts 
machining businesses [12], especially, when this has to be realised energy effi-
ciently. Thus, it is vital to optimise, for the quality of surface roughness and the 
energy use rate, the cutting process. The machining parameter optimisation is 
vital in causing minimisation of the EN19 components manufacturing cost with 
achievement of appropriate surface roughness. Earlier research findings, on the 
machining of Ti6Al4V, established that higher machining rates and material 
removal rates are associated with lower energy use [13]. Whilst the findings by 
Tayisepi, et al., [14], on the same material, established that the component sur-
face quality deteriorates as the cutting speed and feed rate increased. In this 
highly competitive global business environment infested with constraining 
challenges, fulfilling the prerequisites of elevated productivity, achieving sus-
tainably good surface quality, of the machined EN19 components, cost effec-
tively and energy efficiently, whilst also preserving resources of the machining 
process forms a difficult-to-balance matrix. These features have become mea-
surement metrics of the quality superiority in machining manufactured com-
ponents lately. 

Published literature exists on optimisation and machinability improvement of 
other materials using varied sustainability cutting strategies. For example, Duf-
lou, et al., (2012) [15] and Dawood, [16] discussed different techniques and 
strategies for the sustainable machining manufacturing of, particularly, Ti-alloys. 
Special reference was made to the selection of optimum cutting conditions intent 
on minimising energy use, implementation of advanced lubrication and/or 
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cooling techniques and the application of advanced hybrid cutting strategies, 
cutting tool geometry optimisation and these factors material effect on the ma-
chining process. Gupta and Laubscher [17] wrote on the schemes which aug-
ment the improvement of titanium alloys machining sustainability which, 
among others include: adoption of hybrid machining methods, use of advanced 
cooling and lubrication strategies, optimising machining parameters and selec-
tion of appropriate tool material and geometries. They delineated key drivers 
which buttress the realisation of the sustainable machining of titanium alloys 
which include—attaining resource efficiency through minimising tool failure, 
ensuring lower power and energy consumption, reduction of consumption of 
cutting fluids and water, reduction of waste, part quality improvement and mi-
nimisation of environmental pollution. Papakostas, et al., [18] researching on 
perspective on manufacturing strategy, recommended corresponding techniques 
and manufacturing strategies to provide the methods to attain the key drivers 
which target to strengthen the achievement of the three sustainability pillars. 
Not much literature, however, is published on the optimum and sustainability 
machining of EN19 steel materials, particularly with respect to the machining 
planning stage determination of suitable cutting parameters for minimising 
energy use and generation of good quality surface on the workpiece exterior 
from the lathe turning process. 

Surface roughness, a surface integrity component, is an important quality 
feature of machined EN19 material components. Surface roughness, attributably, 
influences the mechanical and physical performance characteristics of machined 
components, as the post machining functionality of processed parts is essentially 
influenced by the surface finish quality produced during the cutting process [19]. 
According to Deiab, et al. [20] the effectiveness metrics of a machining process, 
among other factors, can be read through improved component surface quality 
and energy use efficiency. Therefore, the selection of a suitable cutting parameter 
combination, which prompts energy use conservation, presents an appropriate 
strategy to adopt—during machining—in order for the cutting to be sustainable. 

This research, presents results of the experimental study of the cutting para-
meter optimisation process, for energy efficient machining and improved sur-
face quality generation, during the outside turning of EN19 material. The inten-
tion of the study is to aid the machining industry of EN19 material by establish-
ing the optimum cutting parameters for obtaining the good surface quality de-
sired at minimum energy use. 

Analysis of Variance (ANOVA) and Signal to Noise (S/N) Ratio 

In a design of experiments research plan the Analysis of Variance (ANOVA) is 
used to test the significance of the influence of input process parameters, from a 
series of experimental results, on the response parameters. ANOVA determina-
tion can be used to test the significant differences between means, with the va-
riance being used to determine whether the means are different. Analysis of va-
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riance tests the hypothesis that the means of two or more populations are equal, 
wherein, the null hypothesis postulate that all population means (factor levels) 
are equal whilst the alternative hypothesis states that atleast one is different. The 
importance of one or more factors is assessed by comparing the response varia-
ble means at different factor levels [21]. Vital significant process variables which 
impact and control the process, out of the many parameters, are used to develop 
the mathematical model required to represent the process. ANOVA tests can be 
one-way or two-way. One-way ANOVA tests the quality of population means 
when classification is by one variable (factor) which usually have three or more 
levels. The level represents the treatment applied. Examination of differences 
among means using multiple comparisons is possible with the one-way proce-
dure. A one-way ANOVA with two levels is equivalent to a t-test [22]. When 
classification of treatment of the population means is by two variables (factors) 
then a two-way ANOVA is used to perform the quality testing. In a two-way 
ANOVA the data must be balanced, i.e. all cells must have the same number of 
observations and the factors must be fixed. The input factors in this study were 
cutting speed, tool rake angle and feed rate, in the 95% confidence interval. 
Thus, significant factors will have a p value of 0.05 or less in the tested range. 

Signal-to-noise (S/N) ratio—expresses the ratio of the mean (signal) to the 
standard deviation (noise). This is the statistical measure of performance used to 
select the best control levels that best survive the noise factors with minimum 
variation effect on the process outcome. Control factors which reduce the incon-
sistency in the process are established through a measure of robustness which is 
attained through minimising the effect of the uncontrolled (noise) factors. Noise 
factors cannot be controlled during processing, but during the planning [23]. 
Higher S/N ratio values pin point control factor settings that minimise the ef-
fects of the noise factors. The S/N ratio measures how the response varies rela-
tive to the target or nominal value under different noise conditions. Generally 
the three categories of performance characteristics used to analyse the S/N ratio 
are nominal-is-best, larger-the-better and the smaller-the-better [23]. Whereas 
there are several different possible S/N ratios the main standard ones which were 
also considered for this research were [24]: (a) Biggest-is-Best quality characte-
ristic given by equation Equation (1), thus: 

21

1 110logB i
i
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 
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∑                    (1) 

where yi is the value of the ith quality characteristic and n is the number of expe-
riment tests. 

The nominal is best characteristic equation is presented in Equation (2) 
2
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The characteristic given by, Equation (3), is the smallest is best factor of 
quality 
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S/N ratio data analysis should determine the best optimum setting of the op-
erating parameters (cutting speed, tool rake angle and feed rate) in order to at-
tain the desired machined component quality at minimum energy expenditure 
and desired surface quality. The optimum operating conditions are obtained by 
selecting the parameters that gives the maximum values of the S/N ratio. This is 
done by using the main effects plots of the S/N ratios [22]. In this study the 
quality of performance is maximised by minimising the surface roughness and 
(energy use) requirement of the machining process. Thus the smallest is best 
characteristic is used. 

2. Methodology, Materials and Equipment 

Multi-level full factorial design was utilised as the experiment planning scheme. 
A total set of 48 experiment runs—constituted of combinations of 3 factors—were 
carried out. 

The aim of the experiments was to study the relationship of cutting parame-
ters with respect to the output of energy consumption minimisation and surface 
quality improvement of machined EN19 components as well as being to deter-
mine the energy and surface quality optimising cutting parameters during the 
outside turning of cylindrical EN19 components. Turning experiments were car-
ried out using the Cazeneuve 360 HB Precision Lathe machine, shown in Figure 
1. The lathe machine features include the following: maximum spindle speed of 
3000 rpm from least value of 50 rpm; maximum swing of 200 mm; maximum 
power of the main motor, 5.15 kW and spindle bore of 40 mm. 
 

 
Figure 1. Cazeneuve 360 HB-X precision lathe machine. 
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The EN19 alloy specimens material was supplied in tensile condition as a solid 
round bar (Ø = 40 mm × 150 mm long). The experimental work piece chemical 
and mechanical properties—as provided on the material certificate—are, respec-
tively, shown in Table 1 and Table 2. 

The experimental procedure involved variation of cutting speed in four levels, 
four levels variation of feed rate and three levels variation of the cutting tool rake 
angle whilst the depth of cut was kept constant and the cooling mode was dry 
machining. 

The cutting conditions are shown in Table 3. 
The focus of this research study was the energy transformation stage at the 

machining process level and the surface roughness trends of the machined 
component. Electrical energy is supplied to the lathe machine, and is converted 
into mechanical energy (kinetic) which is used to separate the material during 
cutting at the different cutting speeds and feed rates using coated solid carbide 
tipped tools with 3 levels of rake angle. Some of the energy is used to power the 
machine functional unit modules (as constant power) as well as to supply lubri-
cation and cooling at the cutting tool work piece interface. At process level, dur-
ing cutting, the kinetic energy is transformed into various energy outputs. 
Coated carbide tipped tool mounted in a Sandvik tool holder (DCLNL 2525 
M12) was used for the external diameter turning of EN19 solid material round 
billet specimens under dry machining condition. The cutting conditions were 
varied during the experimental process with cutting speed, vc = 100 - 250 m/min 
in steps of 50 m/min, feed rate, fn = 0.1 - 0.4 mm/rev in steps of 0.1 mm/rev and 
rake angle, α = 0˚, 5˚ and 10˚. A constant depth of cut of 0.5 mm was utilised. In  
 
Table 1. Chemical composition the specimen material (weight %). 

Element Mn Si C Cr P Ni S Mo 

Composition % 0.86 0.220 0.414 1.3 0.016 0.031 0.014 0.32 

 
Table 2. Mechanical properties of the specimen material. 

Condition 
Tensile, 

Mpa 
Yield, 
Mpa 

Elongation 
% 

Izod 
impact 

Hardness 
Brinell 

T 940 680 13 54 280 

 
Table 3. Machining parameters and conditions of the turning experiments. 

Parameter Condition Units 

Cutting Speed (vc) 100, 150, 200 and 250 M/min. 

Feed/rev (fn) 0.1 - 0.4 in 0.1 mm steps Mm/rev 

Tool Rakeangle 0˚, 5˚ and 10˚ Degrees 

Depthof Cut (DoC) 0.5 constant mm 

Coolant Drymachining.  
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order to conform with the ISO Standard 3685 - 1977 (E), for single point turning 
tools, a wear criterion of VB = 300 µm [14] was used for all the machining expe-
riments. Surface roughness (Ra) was measured using a T500 Hommel surface 
roughness tester. An average of 3 surface roughness measurements at 3 different 
spots on the machined shaft was recorded. 

The power requirements of a machining production operation can be ob-
tained by measuring the power input to the machine tool drive during a cutting 
operation and then subtracting the idle (tare) power [25]. The energy expended 
by a machining process may be estimated by direct measurement—wherein the 
current, voltage and power factor, during machining, are directly measured. This 
approach, although being expensive and requires close monitoring, produces 
accurate data on the exact power consumed. Deriving from the analysis of this 
base data, prediction and optimisation models of energy consumption and sur-
face roughness can be developed. Else the power can be measured indirectly 
through estimating it from the forces and velocities data (Muataz, et al., 2011). 
In this study, the direct energy measurement method was used. Power mea-
surements were carried out using the Digital Lutron 3 Phase Power Analyser 
DW-6092. The experimental set-up is shown in Figure 2. 

In this experimental study, Average surface (Ra) value—which is one of the 
most important machinability criteria—was measured by using Mitutoyo’s Surf-
test surface roughness tester within sampling length 2.5 mm. Ra expresses the 
average deviation of a surface from the mean height [24]. It is a measure of the 
irregularities on the surface and is one of the characteristics of the surface tex-
ture, besides waviness and lay. 

3. Results and Discussions 

Table 4 presents the summary of the experiment results. Ensuing is the analysis 
of the results in detail. 

The analysis of variance (ANOVA), of surface roughness, results are presented  
 

 
Figure 2. The machining process experimental setup. 
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Table 4. Summary of the experiment results. 

Cutting 
speed, Vc 

Feed  
rate, fn 

Rake  
angle 

Surface  
Ra (µm) 

Av Power 
(kW) 

Energy 
(Joules) 

Cutting 
speed, Vc 
(m/min) 

Feedrate, fn 
(mm/rev) 

Rake 
angle 
(Deg) 

Surface  
Ra (µm) 

Av  
Power 
(kW) 

Energy 
(Joules) 

100 0.2 5 10.0 0.3 144.4 100 0.1 10 11.6 0.2 299.4 
100 0.1 5 13.7 −0.1 317.2 150 0.4 0 20.0 1.1 86.0 
200 0.2 0 10.0 0.8 108.7 200 0.4 0 16.7 1.3 67.1 
100 0.4 0 15.0 0.8 146.5 200 0.2 5 10.0 0.9 115.4 
100 0.4 5 15.0 0.6 100.4 100 0.3 10 15.0 0.6 112.7 
250 0.3 0 10.0 0.9 75.8 150 0.3 5 12.3 0.9 99.3 
150 0.3 10 12.3 0.9 101.2 250 0.2 10 10.0 1.2 117.8 
150 0.1 10 10.0 0.0 260.2 200 0.3 5 16.7 0.8 102.3 
100 0.3 0 30.0 0.2 170.0 250 0.3 10 20.0 1.4 83.1 
200 0.4 10 17.0 1.8 79.4 150 0.2 10 11.7 0.7 139.2 
150 0.1 0 13.0 0.2 304.5 200 0.4 5 15.0 1.5 72.3 
100 0.1 0 15.0 0.4 347.2 200 0.1 5 10.5 0.5 232.0 
250 0.4 5 13.3 1.5 58.9 200 0.3 0 10.0 1.0 104.2 
250 0.4 10 10.0 1.9 68.1 250 0.3 5 15.0 1.4 83.6 
250 0.1 10 8.5 0.3 165.8 100 0.4 10 20.0 0.8 89.7 
250 0.2 0 10.0 0.8 105.4 250 0.4 0 15.0 1.6 66.6 
150 0.2 5 5.0 0.4 120.5 100 0.2 10 12.0 0.5 149.8 
150 0.4 10 15.0 0.8 94.4 100 0.3 5 11.7 0.4 99.3 
100 0.2 0 10.0 0.4 242.5 200 0.1 0 11.6 0.5 258.2 
150 0.3 0 12.3 0.1 72.0 250 0.1 0 10.0 0.8 193.4 
250 0.1 5 9.2 0.7 180.0 250 0.2 5 12.3 0.8 110.6 
200 0.1 10 9.6 0.5 188.6 150 0.4 5 15.0 0.8 77.3 
150 0.1 5 12.5 0.5 295.4 200 0.3 10 15.0 1.2 94.6 
200 0.2 10 15.0 0.8 145.6 150 0.2 0 15.0 0.6 121.4 

 
in Table 5. The ANOVA results show that the three variable input parame-
ters—feed rate, rake angle and cutting speed have positive effect on the meas-
ured response parameter, surface roughness—Ra. The three input parameters 
have significant influence on surface roughness. The ANOVA results p-values of 
0.0209 for cutting speed, 0.0025 for feed rate and 0.0402 for rake angle show that 
all the factors have significant influence on surface roughness as they are all less 
than 0.05. The order of factor significance on the response parameter—surface 
roughnes—show that feed rate, followed by cutting speed and lastly rake angle, 
are in that order dominant parameters respectively influencing the surface 
roughness.  

The signal-to-noise ratios main effects plot results for surface roughness is 
presented in Figure 3. The plot was premised on the surface quality characteris-
tic of equation Equation (3) that smallest is the best. The Taguchi analysis of 
surface roughness, resulting from the main effects plots of the signal-to-noise ra-
tio, show that the optimum cutting parameter combination returning optimum 
surface roughness response is 100 m/minute cutting speed, 0.4 mm/rev  
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Table 5. Analysis of variance for surface roughness, Ra. 

Source DF SS MS F P 
Cutting speed, vc 3 55.74 18.58 1.58 0.0209 

Feedrate, fn 3 215.68 71.89 6.12 0.0025 
Rake angle 2 21.94 10.97 0.93 0.0402 

Error 39 458.23 11.75 - - 
Total 47 751.59 - - - 

 

 
Figure 3. Surface roughness signal-to-noise ratio main effect plot. 
 
and 0 degree rake angle. 

The mathematical model explaining the relationship of surface roughness, Ra, 
with the variable input parameters was approximated from regression analysis, 
and the result is presented in Equation (4): 

Ra = 12.31 − 0.01732 Cutting speed, vc + 17.06 Feed rate, fn − 0.068 Rake angle (4) 

The model summary for surface roughness is presented in Table 6 and the re-
sidual plot histogram and normal probability plot, given in Figure 4, showing 
most of the data points around the mean line which shows near normal distribu-
tion. This confirms effective representativeness of the data being modelled by 
the model. 

At 95% confidence level, the ANOVA results of average power in Table 7 
show that the three variable cutting parameters—cutting speed, feed rate and 
rake angle—had significant positive influence on average machining power giv-
en that their p-values are less than the threshold value of 0.05. Thus, the input 
factors have significant influence on the response parameter, average machining 
power. It is apparent, however, that the effect of rake angle (at p-value of 0.273) 
is less influential, on the response parameter, than that of both cutting speed and 
feed rate whose p-value both is 0.000. 

The Taguchi analysis of the average machining power—main effects plot for 
the signal-to-noise ratios of average machining power—results presented in  
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Table 6. Surface roughness regression model summary. 

S R-sq R-sq (adj) 

3.42775 39.03% 26.53% 

 

 
Figure 4. Surface roughness residual plots. 
 
Figure 5, shows that power use optimisation is achievable by operating at a cut-
ting speed of 250 m/min, feed rate of 0.4 mm/rev and rake angle of 10 degrees. 
Thus, efficient operation improvement would need that feed rate be addressed 
first before cutting speed and rake angle are respectively successfully addressed. 

The mathematical relationship of the input variables (cutting speed, feed rate 
and cutting tool rake angle) to the response parameter (average cutting power) is 
expressed in the regression equation in Equation (6). The strong representative-
ness of the data by the fitted regression line is indicated by the coefficient of de-
termination (r2) of 80.45% shown in the model summary of the average ma-
chining power (Table 8) confirm the strong representativeness of the fitted re-
gression model by the data.  

Av Power 0.794 0.004813 2.624 0.01249Rake anglec nv f= − + + +     (5) 

Further confirmation and validation of the regression model as an authentic 
representation, of the data considered, is presented in the residual plot of the av-
erage machining power model (Figure 6) in which more than 80% of the points 
are shown to be about the mean line in the normal probability plot and appear-
ing to be in near normal distribution in the histogram. 

Machining energy was also one of the response parameters assessed. Machin-
ing energy was determined from considering the applied power and the time 
length taken in executing a machining operation. The machining energy analysis 
of variance result is presented in Table 9. The machining energy ANOVA result 
trend is similar to the average cutting power result where in all the input variable  
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Table 7. ANOVA for average power. 

Source DF SS MS F P 

Cutting speed, vc 3 3.5970 1.19900 24.03 0.000 

Feedrate, fn 3 4.2771 1.42570 28.57 0.000 

Rake angle 2 0.1340 0.06699 1.34 0.273 

Error 39 1.9461 0.04990 - - 

Total 47 9.9542 - - - 

 
Table 8. Average power regression model summary. 

S R-sq R-sq (adj) 

0.223384 80.45% 76.44% 

 
Table 9. Analysis of variance for machining energy. 

Source DF SS MS F P 

Cutting speed, vc 3 36,965 12321.8 16.57 0.000 

Feedrate, fn 3 211,472 70490.6 94.81 0.000 

Rake angle 2 3057 1528.6 2.06 0.142 

Error 39 28,997 743.5 - - 

Total 47 280,491 - - - 

 

 
Figure 5. Signal-to-noise ratio main effect plot for average power. 
 
cutting parameters (cutting speed and feed rate) have positive influence on the 
response parameter, machining energy whilst the cutting tool rake angle is in-
significantly influential on the response parameter. The ANOVA p-values, of 
first two input parameters, were less than 0.05, showing that the influence of  
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Figure 6. Residual plots of the average cutting power. 
 
cutting speed and feed rate, on the response parameter, is more dominant than 
cutting tool rake angle with a p-value of 0.142 whilst the former both have 
p-values of 0.000. 

The Taguchi analysis, main effects plot of the S/N ratio of the machining ener-
gy, results is presented in Figure 7. The results show that the optimum cutting 
energy is attainable by setting the input variables at the following conditions: cut-
ting speed at 100 m/min, feed rate at 0.1 mm/rev and rake angle at 0 degrees. 

The regression equation in 6 models the machining energy with respect to the 
input variable parameters. The coefficient of determination, (R2) of 89.66%, in 
the model summary in Table 10, confirms the firm representativeness of the da-
ta by the fitted regression model. The coefficient of determination confirms the 
significance of how effectively the regression model (equation Equation (7)) ap-
proximates the real data points projecting the relationship between the predictor 
variables and the response parameter, machining energy. An R2 of zero means 
that the independent variables cannot predict the dependent variable. 

Energy 373.4 0.4889 544.0 1.75Rake anglec nv f= − − −           (6) 

The machining energy residual plots—normal probability plot and the near 
normal distribution histogram, in Figure 8, further expound the strong repre-
sentativeness of the data by the fitted regression model. 

Optimum Conditions & Confirmation Experiments Summary 

According to Rajpure, et al. [26], the last stage in an experimental study is to 
conduct confirmation experiments in order to validate the authenticity of de-
termined optimum conditions. Thus, in this study the set of established opti-
mum conditions for surface roughness, average power and machining energy 
were respectively set, on the machine tool as the operating conditions, the response  

https://doi.org/10.4236/wjet.2024.122028


N. Tayisepi et al. 
 

 

DOI: 10.4236/wjet.2024.122028 451 World Journal of Engineering and Technology 
 

 
Figure 7. Signal-to-noise ratio main effect machining energy. 
 

 
Figure 8. Machining energy residual plots. 
 
Table 10. Machining energy regression model summary. 

S R-sq R-sq (adj) 

27.2674 89.66% 87.54% 

 
parameters were measured and the results compared with the experiment model 
outcomes in order to see if there is significant or acceptable variation between 
the model prediction and the physical machining outcomes. The optimum and 
validation results summary for this study are presented in Table 11 cluster. 
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Table 11. Optimum and validation experiment results cluster; (a) Surface roughness. (b) 
Average cutting power; (c) Machining energy. 

(a) 

Model predicted input  
variable parameters 

Response parameter 
optimum 

Variation % 

Cutting 
speed 

Feedrate Rake angle 
Model 

optimum 
Experiment 
Optimum  

100 
m/min 

0.4 mm/rev 0 degrees 17.42 µm 15.95 µm 8.4 

 
(b) 

Model predicted input  
variable parameters 

Response parameter 
optimum 

Variation % 

Cutting 
speed 

Feedrate Rake angle 
Model 

optimum 
Experiment 
Optimum  

250 
m/min 

0.4 mm/rev 10 degrees 1.46 kW 1.52 kW 4.11 

 
(c) 

Model predicted input  
variable parameters 

Response parameter 
optimum 

Variation % 

Cutting 
speed 

Feedrate Rake angle 
Model 

optimum 
Experiment 
Optimum  

100 
m/min 

0.1 mm/rev 0 degrees 232 J 243 J 4.7 

4. Conclusion 

The study utilised the design of experiments full factorial experiments design to 
plan the empirical experiments in the process of optimising machining parame-
ters for minimising energy use and achieving minimum surface roughness. 
ANOVA was utilised to establish the most dominating variable input cutting 
parameter which impact on the response parameters. The S/N ratio has been 
used to establish the optimum process parameters which enhance energy use 
minimisation whilst simultaneously achieving good surface quality. Research 
results were analysed and conclusions were reached that feed rate is the most 
dominant factor, followed by cutting speed whilst cutting tool rake angle had li-
mited effect, in influencing surface roughness, energy use and power utilisation. 
Optimum cutting conditions were respectively determined for producing desir-
able minimum surface roughness at minimum energy and power use. Regression 
models were generated for the three response parameters as functions of the va-
riable input parameters. Future work entails the development of the adaptive 
control system for the automatic management of the determined optimum ma-
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chining strategy. 
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