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Abstract 
In this contribution results from different disciplines of science were com-
pared to show their intimate interweaving with each other having in common 
the golden ratio φ respectively its fifth power φ5. The research fields cover 
model calculations of statistical physics associated with phase transitions, the 
quantum probability of two particles, new physics of everything suggested by 
the information relativity theory (IRT) including explanations of cosmologi-
cal relevance, the ε-infinity theory, superconductivity, and the Tammes prob-
lem of the largest diameter of N non-overlapping circles on the surface of a 
sphere with its connection to viral morphology and crystallography. Finally, 
Fibonacci anyons proposed for topological quantum computation (TQC) were 
briefly described in comparison to the recently formulated reverse Fibonacci 
approach using the Janičko number sequence. An architecture applicable for 
a quantum computer is proposed consisting of 13-step twisted microtubules 
similar to tubulin microtubules of living matter. Most topics point to the om-
nipresence of the golden mean as the numerical dominator of our world. 
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1. Introduction 

The golden mean or golden ratio is an omnipresent number in nature, found in 
the architecture of living creatures as well as human buildings, music, finance, 
medicine, philosophy, and of course in physics and mathematics including quan-
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tum computation [1] [2] [3]. It is the most irrational number known with the 
simplest continued fraction representation at all [4] and a number-theoretical cha-
meleon with a self-similarity property. All these properties render it to be suita-
ble for quantum computer application. According to Olson et al. [2], the whole 
universe functions as a golden supercomputer. The seminal ε-infinity approach 
developed by El Naschie years ago and applied to cosmological questions based 
on this simple principle of nature [5]. El Naschie and his scientific fellows con-
densed these ideas to a grand unification of the sciences, arts and consciousness 
[2]. Before also the great women scientists Mae-Wan Ho [6] and Leila Ma-
rek-Crnjac [2] [7] made valuable contributions to this topic as well as Ji-Huan 
He [2]. Another contribution of Klee Irwin about unification of physics and 
number theory takes a similar approach using statements from quantum physics 
[8]. 

However, recently the unification of physics was advanced by Suleiman’s in-
formation relativity theory (IRT) correcting an overlooked flaw in Newton’s theory 
with respect to time displacements between observer and moving bodies [9]. Many 
formal physical constructs are overcome by this new insight. 

Whereas the unification of physics is intimately connected with the golden 
number system, in this contribution the main focus is simply on phase trans-
formation governed by the fifth power of the golden mean and insights beyond 
this topic. 

Herein the golden mean is denoted by φ. Its inverse number is just 1 1ϕ ϕ− = + . 
One yields numerically 

5 1 0.6180339887
2

ϕ −
= =                     (1) 

1 5 1 1 1.6180339887
2

ϕ ϕ− +
= = + =                 (2) 

It is important to notice that in numerous papers, for instance such about  

topological quantum computation (TQC), the golden mean is taken as 5 1
2
+ .  

However, in emerging matrix representations for Fibonacci anyon models ac-
tually the inverse of this number is always found in the matrix elements. So the 
choice of the golden ratio according to Equation (1) is well founded and should 
be maintained. 

While in nature this number emerges as result of chaotic-statistical evolution, 
on the other hand, the fifth power of φ is frequently linked to phase transitions 
from microscopic to cosmic scale. The secrete behind both number may be re-
vealed by considering their infinitely continued fraction representations [4] in-
dicating how simple nature’s most effective evolutionary forecast works  

5 1 1
12 1 11

1

ϕ −
= =

+
+

+

                     (3) 
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                         (4) 

Rogers-Ramanujan presented a continued fraction of the form [4] [10]  

( )
1 5

2

3

1
1

1
1

qr
q
q

q

τ =
+

+
+

+

                        (5) 

where 2e iq τπ= . For 0τ =  one gets the golden mean φ, and for 1iτ = = −  
the interesting result is [4] 

( ) 1 1

25
5

5 5 1 5 2
2 2

10

r i ϕ ϕ

ϕϕ

− −+ +
= − = + −

 π
≈ π +  

 

                (6) 

which can be approximated by terms containing 5ϕ . About a nested infinitely 
continued fraction calculating 0.619071ϕ =   see [4]. Due to the property of 
the golden number its fifth power can be traced back to the simple relation  

5 5 3ϕ ϕ= −  (see also Appendix). 
However, if one deals especially with the behavior of matter suffering from 

phase transitions, then the ideas of Baxter caused the deepest impact on phys-
ics [11] [12] [13] and will be reviewed in some detail in the following chapter. 
Then Hardy’s quantum probability function of two particles was investigated in 
more detail and connected with results of mathematical statistics and statistical 
mechanics [14] [15]. Surprisingly, Hardy’s function is found in the matter ener-
gy density relation resulting from Suleiman’s information relativity theory (IRT), 
too [9] [16]. The maximum of this energy density relation at a recession velocity 
of φ yielded exactly φ5 and was attributed to criticality of a transition at cosmic 
scale [9]. Another phase transition of economic relevance, the superconducting 
transition, also indicates a φ5 relation [17] [18] [19]. After this a further topic is 
included, namely Tammes problem of the largest diameter of N non-overlapping 
circles on the surface of a sphere with its connection to viral morphology and 
crystallography [20]. Finally, Fibonacci anyons proposed for topological quan-
tum computation (TQC) were briefly described [21] [22] in comparison to the 
recently formulated reverse Fibonacci approach using the Janičko number se-
quence [23]. All these ideas are pioneering for applications including, besides 
mathematics and geometry, cosmology, crystallography, electrostatics, music, bo-
tany, viral morphology as well as quantum computation in connection with hu-
man mind and consciousness, and point to the omnipresence of the golden mean 
as the numerical dominator of our world.  

It remains to be noted that it was a long way before Baxters ideas were fully 
accepted by down-to-earth physicists, and it is hoped that the new ideas formu-
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lated by Suleiman respectively El Naschie and scientific fellows will be soon tak-
en over by the scientific community. 

2. Phase Transition in the Hard Hexagon Lattice Gas Model 

Simplistic models of statistical mechanics covering a large system of particles are 
important in linking microscopic and macroscopic average properties and beha-
vior of matter undergoing a transition from disordered states to ordered ones by 
density increase or temperature reduction. The Ising model of a ferromagnet 
was the first exactly solved two-dimensional model defined on a square lattice 
[24].  

In the following we want to pay tribute to Baxter’s important research in the 
field of statistical mechanics [11] [12] [13], dealing with the geometry and phase 
transition of a hard two-dimensional hexagonal lattice gas model, where hard 
means non-overlapping hexagons. Figure 1 illustrates a possible distribution of 
such non-overlapping hexagons in a triangular lattice cutout. A synopsis of re-
sults besides selected references for models of rigid gas molecules on a regular 
lattice is given by Finch [25]. Baxter was able to give an almost exact solution of 
this hard-hexagon model. For such a model the grand-canonical partition func-
tion Z is given by 

( ) ( )3
0 ,

N
n

nZ z z g n N
=

= ∑                         (7) 

where the positive real variable z denotes activity or fugacity, and ( ),g n N  de-
fines the number of allowed ways of placing n particles (molecules) on the lattice. 
One can write the partition function per site of an infinite lattice as 

1lim N
n Zκ →∞=                             (8) 

Low activity is equivalent to homogeneity, whereas high activity complies with 
heterogeneity. In this way, a phase transition is expected. Baxter discovered two 
distinct regions of positive fugacity with criticality at the point z = zc 

0 cz z≤ <  and cz z< < ∞                        (9) 

 

 
Figure 1. Statistical sites of hard (non-overlapping) hexagons in a triangular lattice cu-
tout. 
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Quite surprisingly, the result for the critical zc is numerically equal to the re-
ciprocal fifth power of the golden ratio 

5 511 11.0901699cz ϕ ϕ−= = + =                    (10) 

A second (non-physical) singularity was found for 5 0.090169943npz ϕ= − = − 
 

The two singularities are the roots of the simple quadratic equation 
2 1 0,c cz az− − =                            (11) 

where a = 11. For a = −1 one simply gets the golden mean 5 1
2

ϕ −
=  as one of  

the solutions. So we are once again faced with the importance of the golden 
mean in statistical mechanics. 

The behavior of the mean density ρ(z) and the order parameter R(z) at the  

critical point has been calculated, too. By using the normalized value r
c

zz
z

=  

one confirms 

( ) ( ) ( )
3 2 2
2 3 3

5 5

1~ 5 1 1 ,c r c r cz z z z zρ ρ ρ
ϕ ϕ

− −
−− − = − − →

+
 (low density branch) (12) 

where  

5 5 0.276393202
10 5c

ϕρ −
= = =                  (13) 

( ) ( ) ( )
11
99

5 5

3 1 3 11 1 ,
5 5 5 5r r cR z z z z z

ϕ ϕ
+

−

  
= − = − →   +   

 (high density branch) (14) 

It is worth to note that the critical exponents 2/3 and 1/9 are conjectured to be 
universal. Further one should notice that the pre-factors given in the original 
publication are simply the reciprocal of the sum of the fifth power of the golden 
mean and its inverse 

3
52

5 5

1 15 11 2 .
5 5

ϕ
ϕ ϕ

−

−= = = +
+

                 (15) 

For a more precise study of the hard hexagon partition function in the com-
plex fugacity plane see the valuable contribution published by Assis et al. [26]. 

Following Tracy et al. [27], the fugacity z(τ) can be derived from Klein’s ico-
sahedron function ς(τ) [27] [28] as a branched cover (analytic bijection) of the 
Riemann sphere giving 

( )
( )
( )

5

5

disordered regime

ordered regime
z

ς τ
τ

ς τ−

−= 


               (16) 

which is compatible with Baxters results for the hard hexagon approach [11] [12] 
[13]. The close connection between an icosahedron as a regular solid and the 
theory of groups should be noted here. Re-expressing the approach of Assis et al. 
[26] by likewise using the complex variable z = ς5, the golden ratio φ and the 
fifth root of unity 1ω  (see Appendix). 
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2
1 11 , 1,

2 2
iϕω ϕ ω−= + + =                    (17) 

and applying the h5 order-5 transformation  

( ) 1
5

1

h ω ϕς
ς ς

ω ϕ ς
−

→ =
+

                      (18) 

then due to this transformation the Hauptmodul H(ς) is invariant by the involu-
tion 1ς ς −→ −  and as well by the order-5 transformation 1ς ω ς→ ⋅  

( ) ( )( ) ( ) ( )1
5 1H H h H Hς ς ς ω ς−= = − ⋅=            (19) 

3. Hard Square Lattice Model 

It was also Baxter [12] [13] who introduced the two-dimensional hard-square 
lattice model. Figure 2 depicts a statistical site occupation cutout based on an il-
lustration given by Finch [25]. 

Baxter showed that this model is integrable resulting in two critical points at 
fugacities zc 

5
cz ϕ= ±                           (20) 

Again the fifth power of the golden mean is involved in the result. Baxter’s 
famous work was seemingly overlooked and therefore not quoted in the Science 
article about quantum criticality, which was experimentally verified in the gol-
den ratio bearing spin dynamics next a phase critical point of the quasi-one- 
dimensional Ising ferromagnet CoNb2O8 published by Coldea et al. [29].  

Beyond it should be mentioned that the quantum Hamiltonian of a one-di- 
mensional hard-boson model was found to map the transfer matrix of Baxter’s 
hard-square model with a quantum critical point at [30]  

5V
w

ϕ=                           (21) 

where V represents the nearest-neighbor (two sites apart) interaction, U the 
chemical potential of the bosons, and 2 2w V UV= + . The Hilbert space of the 
chosen one-dimensional quantum approach is shown to be identical of the space 
of states along a line of the hard-square model [30]. 
 

 
Figure 2. Hard squares sites on the square lattice [25]. 
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4. Results of ε-Infinity Theory and Beyond 

El Naschie’s E-infinity (ε∞) theory [5] originates from a fractal Cantorian set 
theory [31] as a number-theoretical route of physics for explaining the dualism 
between particles and waves that can serve solving cosmological mysteries such 
as dark matter and dark energy [5]. The approach delivers effective quantum 
gravity formulas for the cosmological mass (energy) constituents of baryonic mat-
ter eM, dark matter eDM, entire dark constituents eED, and pure dark energy ePD as 
follows 

5

0.04508497
2Me ϕ

= =                    (22) 

251 0.9549150
2ED Me e ϕ= − = =                (23) 

43 0.218847
2DMe ϕ= =                    (24) 

12 0.736068
2PDe ϕ= − =                   (25) 

1M DM PDe e e+ + =                      (26) 

The readers are faced in the resulting formulas with the golden mean, espe-
cially with its fifth power in the beautiful relation  

5
25 1

2 2M EDe e ϕ ϕ+ = + =                    (27) 

where matter is completed by its dark wavy surrounding. 
In a previously published contribution the present author recast both the 

matter amount eM and dark matter one eDM into a suitable form by combining 
5ϕ  and the inverse number to suggest a reciprocity relation between both mat-

ter entities according to [17] [19] 

51 5 0.04508
10Me ϕ= =                     (28) 

( ) 151 5 0.22180
10DMe ϕ

−
= =                   (29) 

Then a persuasive equation for the pure dark energy ePD can be written down 
[17] [19] 

( )( ) ( )
15 511 5 5 0.7331 73.31%

10PDe ϕ ϕ
−

= − + =          (30) 

Such quantum entanglement based coincidence means that the constituents of 
the cosmos should not be considered independent of each other, which was im-
pressively confirmed later by the IRT theory of Suleiman [9]. 

5. Hardy’s Quantum Probability and Suleiman’s Matter  
Energy Density Relation 

Hardy’s maximum quantum probability of two quantum particles [14] [15] ex-
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actly equals the fifth power of φ (Figure 1). This asymmetric probability distri-
bution function with pτ as entanglement variable, running from not entangled 
states to completely entangled ones, is given by 

2 1
1

p
P p

p
τ

τ
τ

−
=

+
                           (31) 

The maximum of P yielded 

2 5
max

1 0.090169943
1

P ϕ ϕ ϕ
ϕ

−
= = =

+
                  (32) 

The Hardy function, displayed in Figure 3, turns out to be a central topic of 
the scale-free Information Relativity theory (IRT) of Suleiman [9] by mapping 
the transformation of his relative matter energy density. Suleiman characterized 
the behavior at the critical recession velocity crβ ϕ=  as phase criticality at 
cosmic scale [9]. 

Now we want to study this function in more detail, replacing the variable pτ by 
x  and write the function P as 

( ) 2 1
1

xf x x
x

−
=

+
                         (33) 

Integration of ( )f x  leads to 

( ) ( )1

0

1 2 1d ln 2 0.026480514
2 3 12

f x x = − = ≈
π∫             (34) 

The first derivative of ( )f x  resulted in 

( ) ( ) ( )
( )

2

2

2 1d
d 1

x x xf x
f x

x x

− −
′ = =

+
                  (35) 

By comparing the nominator term ( )2 1x x− + −  with Equation (11) the ref-
erence to the golden ratio becomes evident. The remaining multiplicative term 
caused a discontinuity at 1x = − . 

Higher derivatives of ( )f x  lead to the following results 

( )
( )

( )

3 2

3

2 1 3 3

1

x x x
f x

x

− − −
′′ =

+
                     (36) 

( )
( )4

12
1

f x
x

′′′ = −
+

                         (37) 

Special values for ( )f x , ( )f x′  and higher derivatives were summarized in 
the following Table 1. 

If one connects the original function with energy, then its third derivative 
should be somewhat like a pressure. More surprisingly, the third derivative comes 
along as a very simple function with an origin value of −12 at x  = 0 and a value 
of −12φ4 at x  = φ, underscoring the magic importance of number 12, found 
for instance as the number of vertices of the Platonic solid icosahedron. 
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Figure 3. Hardy’s quantum probability P = ƒ( x ) for two particles [14] respectively Su-
leiman’s matter energy density [9] versus the entanglement variable x  (or recession ve-
locity by Suleiman).  

  
Table 1. Special values for the functions ( )f x  and derivatives. 

x ( )f x  ( )f x′  ( )f x′′  ( ) 12f x′′′−  

0 0 0 2 1 

1/3 5/90 = 1/18 5/24 = 0.208333 −5/16 = −0.31250 (3/4)4 

1/2 1/12 1/9 −22/27 = −0.8148148 (2/3)4 

ϕ  5ϕ  0 ( )61 ϕ− +  4ϕ  

1 0 −1/2 −3/2 (1/2)4 

6. Superconductivity 

However, nature presents much more relationships to keep in mind, where the 
golden mean or its fifth power is involved, and superconductivity is no exception. 
So we must reassess the theory considering the dark matter surrounding the 
moving electrons, which dive into the dark after marriage, or in other words, 
become superconducting under special conditions. Recently, the present author 
suggested linking the optimum hole doping 0σ  of high-Tc superconductors with 
the golden mean again in the form of its fifth power [17] [18] [19] 

5
0

8 0.2293σ ϕ≈ =
π

                        (38) 

It was suggested recently that the same is true for conventional superconduc-
tors [18]. Obviously, this optimum is confirmed again near a quantum critical 
point in the superconductor phase diagram. In addition, the relation of the Fer-
mi speed to the Klitzing speed comes out as [17] 
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52 0.0571F

K

v
v

ϕ≈ =
π

                       (39) 

Both relations document the fractal nature of the electronic response in su-
perconductors. Also Prester had reported before about evidence of a fractal dis-
sipative regime in high-Tc superconductors [32].  

In Figure 4 earlier results [17] that illustrate the dependence between the critical 
temperature and the mean cationic charge cq  for unconventional supercon-
ductors were completed with data points for the lanthanum and yttrium su-
per-hydrides respectively H3S, showing the branch of n-type superconductors 
besides the p-type branch.  

The prospect of developing a resilient theory of superconductivity is promised. 
Quantum entanglement of two moving electrons is influenced by local interac-
tion of their interwoven dark matter surroundings, quoting the cogwheel picture 
of Suleiman [9]. In a recent contribution the present author designed the picture 
of two stretched electrons that locally interact to become superconducting. Such 
particle stretching into strands may in the end lead to a double-helically wounded 
wavy entity, which escapes in the dark. 
 

 
Figure 4. Mean cationic charge versus critical temperature Tco(K) of superconducting 
compounds. p: p-type branch, n: n-type branches having σ < σo and σ > σo (σ equivalent 
to cq ). For more details see [17]. 
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7. Tammes Problem of Decorating a Unit Sphere with Hard  
Circles 

In 1930 the Dutch biologist Tammes [20] posed the question about the number 
and the arrangement of exit points in pollen grains. Reformulating the problem 
leads to the question what is the largest diameter of N non-overlapping equal 
circles placed on the surface of a unit sphere, referred to as hard-spheres prob-
lem [33] [34] [35]. A sphere can’t be tiled by using only hexagons. However, a 
perturbation of some hexagons in the hexagonal lattice into pentagons enables 
such a fit on the sphere, exemplified by the soccer ball structure [35]. In the fol-
lowing the energy of interaction is considered resulting from the arrangements 
of N points on the surface of a unit sphere { }2 3: : 1S x x= ∈ =R . The interac-
tion is given by the power low potential , 2 2V x y α α= − − < <  of the Euclidian  

distance between two points 2,x y S∈ . For 0α =  the potential 1lnV
x y

 
=   − 

  

is used. Given a fixed configuration of N points ( )1 2, , ,N Nx x xω =  , the α-energy 
sums up as [33] [36] 

( )
1

1

1ln , if 0
, :

, if 0

i j N
i j

N

i ji j N

x xE

x x
α

α
α ω

α

≤ < ≤

≤ < ≤

 = −= 
 − ≠

∑

∑
               (40) 

Of importance is the determination of extremal energies for N points on the 
sphere [34] [36] 

( )
( )
( )

2

2

inf , , if 0
, :

sup , , if 0
N

N

NS

NS

E
N

E
ω

ω

α ω α
ε α

α ω α
∈

∈

 ≤= 
>

                (41) 

Our concern should now be the special case ( )0, Nε  for which a conjecture 
already exists [34] [36] 

( ) ( )21 4 10, ln ln
4 4

N N N N O N
e

ε  ≥ − − + 
 

              (42) 

( ) 21 4 10, ln ln
4 4

limN

E N N N N
e

N
µ→∞

  − − −     =            (43) 

with an estimate of 0.026422µ = −   [36]. The bound μ may be compared 
with the result given for the integral over the matter energy density (or even the 
Hardy function) according to Equation (35). We assume that this last value 
should be the correct bound  

( )2 – ln 2 0.0264805
3

µ = = −                     (44) 

Quoting Saff et al. [37] respectively Rakhmanov et al. [36], numerical calcula-
tions indicated that logarithmic equilibrium points (α = 0) with a generalized 
spiral point set ˆNω  have the tendency to distribute themselves over a nearly reg-
ular spherical hexagonal net giving again a connection with μ (our interpretation) 
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( ) ( ) 3ˆ0, 0, 114 ln lnNE N N Nω ε
µ

− ≤ ⋅ ≈               (45) 

The interesting connection between minimal discrete energy on the sphere 
and matter energy density of the cosmos according to the information relativity 
theory [9] may suggest far-reaching consequences and should therefore be in-
vestigated more detailed in future. 

8. Viral Morphology and Beyond 

Nowadays we are faced with the worldwide pandemic spread of a very mobile 
corona virus. Therefore, the viral self-assembly and reproduction as a thermo-
dynamic process comes ones again into focus. Viral self-assembly is intimately 
related to the before mentioned Tammes problem [20] of covering the surface of 
a sphere by optimally packed N circular disks with the alteration that in case of 
viruses the coverage may be conformational-optimized by disks-like protein cap-
somers (subunits) having two different radii. Some time ago, Bruinsma et al. [38] 
showed that such a two-radius model as a form of structural free energy minimi-
zation prefers the icosahedral symmetry as well as the transition of sphere-like 
viruses to rod-like ones such as found for bucky-tube aggregates.  

Models for the viral spread are quite complex, but may be likewise considered 
as noise dynamical phase transition with a critical point [39]. Here the golden 
number may come into play, which had dominated the development of first self- 
assembling precursors of life as well as later life itself and the ability to process 
and compress information with extreme speed. 

Heretically put, the deadly virus acts as a corrective to human stupidity by 
clipping human dominance and restlessness for the good of the environment. 
Optimistically, the mankind, if it survives at all, could be able in the distant fu-
ture to control respectively destroy any small pathogenic bodies via teleported 
information, influencing the dark matter halo of the particles.  

In anticipation of the explanations in the next chapter, we may ask whether 
quantum computation with (stable) viral structures could be possible in future 
or by use of artificial microtubules build from helically rolled up hexagon lattice 
entities similar to tubulin proteins that then may operate under ambient condi-
tions. The author recommends reading the seminal contributions of Penrose and 
Hameroff [40] [41] and the recently published remarkable contribution of Olson 
et al. [2] explaining in more detail parts of this topic. Tubulin protein molecules 
form linear chains which are able to self-assemble into 2D sheets that can roll up 
to microtubules (Figure 5) [42].  

The concept of a special arrangement of microtubules into a “heavy” hex-
agonal lattice with numbers that follow the Fibonacci number sequence and with 
vertices that minimize frequency collisions to protect the system from de-coherence, 
has been effectively refined again and again in nature by evolution. Not surpri-
singly, it resembles somewhat the qubit architecture of IBM’s last quantum com-
puter (QC) [43]. As in buckytubes, ballistic electron transport through the mi-
crotubules should be an essential property. Consequently, particles moving with  
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Figure 5. Sketch of a microtubule of helically rolled up tubulin protein subunit chains. 
 

ballistic speed are entangled through their pronounced dark matter halo with the 
environment and can by that pass on and store information. This is an impor-
tant result of the IRT of Suleiman [9]. 

9. Quantum Computation with the Reverse Fibonacci  
Sequence and Fibonacci Anyons 

The golden mean φ as the most irrational number found in nature with the sim-
plest continued fraction representation at all is approximated by the division of 
two consecutive numbers of the Fibonacci number sequence [44] [45]. However, 
Janičko [23] recently introduced a new number sequence that he named reverse 
Fibonacci or Janičko sequence. The reverse sequence may be represented by the 
recursive formula beginning with the first two numbers as 0 and 1 

( )2 18n n nJ J J+ += −                        (46) 

Comparable to the quadratic Equation (7), where solutions lead to the golden 
mean, we can formulate a quadratic equation for the reverse sequence, too. It yields 

2 8 8 0J J− + =                          (47) 

giving fundamental number j1,2 as its two solutions [23] 

( )1 4 8 2 2 2 6.82842712475j = + = + =           (48) 

( )2 4 8 2 2 2 1.171572875j = − = − =           (49) 

As in the case of the golden mean also the reverse number 1
1j
−  seems to be 

important 

1 1 2
1 21 0.1464466094067

8
jj j− −= − = =            (50) 

Again, both numbers can be approximated by the ratio of consecutive Janičko 
numbers [23].  

This number sequence may be important in calculations with quantum bits. 
The particle-wave duality is essential in the quantum information theory, where 
the unit of information is given by the quantum bit (qubit) coined by Schumacher 
[46], which exhibits the aspects of particle localization (counting) and wave in-
terference to represent a signal with high fidelity [46]. Such two-state quantum 
system can be represented by the superposition principle:  
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( ) 12 0 1SU H Q α β≅ = +å , where α and β are complex numbers, where 
2 2 1α β+ =  [46]. A single qubit state can also be written as  

0 e 1 1ipr prφψ = + −                   (51) 

where 0 1pr≤ ≤  is the probability of the bit being in the 0 state, and 0 2φ≤ ≤ π  
is the phase of the quantum. All possible values of pr and the phase φ  are reach-
able by application of quantum gates, realized by reliable and repeatable Joseph-
son junctions. For instance, operating the quantum logical T-gate as quantum 
circuit with a phase of π/4 that is mapped by the unitary matrix 

4

1 0
0 eiT π

 
=  
 

                       (52) 

one gets for ( ) 1
20 0.8535533pr j−= = 

 respectively for  
( ) 1

11 0.1464466pr j−= = 
. In this way the connection of a single qubit with 

Janičko numbers is demonstrated as before suggested by Janičko itself [23]. The 
number 1

1j
−  is near the fourth power of ϕ : 4 0.14589803ϕ =   and  

2 1.1755 052 7 0j ϕ≈ − =  . 
In contrast, topological quantum computation using Fibonacci anyons as 

qubits [47] [48] may be the ultimate approach because it naturally simulates 
processes which determine the speed and storage capacity of human mind. Fi-
bonacci anyons have been proposed as two-dimensional quasi-particles exhibit-
ing fractional quantum Hall states at 5/2 respectively 12/5 filling fractions. As an 
example, a qubit can be build up from four Fibonacci anyons, where the fourth 
“inert” anyon may serve for error correction. The world lines of such anyons 
pass around one another to form braids. Braids can be thought of as quantum 
circuits forming the logic gates, which building up the computer [49]. Their 
non-Abelian braiding statistics with only two particle types are shown to be 
suitable for quantum computation. The two particle types or topological charges 
are the trivial type 1 and the non-trivial type τ, which are self-dual and being 
their own antiparticles (1 = 1*, τ = τ*). The combination or fusion of anyons go-
verned by fusion rules may be thought of as a measurement, graphically dis-
played by a fusion tree [50]. The probability of a fusion is denoted as quantum 
dimension di. The quantum dimension of τ is 1ϕ− , the inverse of the golden mean. 
When two τ anyons are combined, the probability pr to yield 1 is 2

0pr ϕ= , and 
to yield τ is 1pr ϕ=  [50]. 

For a multi-anyon system the number of fusion paths resulted exactly in the 
Fibonacci number, and the move accompanied by the consecutive fuse of the 
anyons from left to right can be represented by a F matrix. For more than three 
anyons consistency equations for the fusion trees in form of pentagon relations 
deliver the entries of the F-matrices [50]. Up to arbitrary phases the 2 × 2 unitary 
F matrix reads  

11 1

1

F F
F

F F
ττττ

τ
τ ττ

ϕ ϕ

ϕ ϕ

  
= =     −   

                  (53) 

where again φ is the golden number (Figure 6). 
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Figure 6. Removing crossings by F and R moves after Slingerland [51]. 
 

The braiding operator B can be derived by matrix multiplication of F-matrices 
with R-matrices. When the R-matrix is given by diagonal spin factors 

4 3 3 4 3
5 5 5 5 5e ,e ,e ,e ,e

i i i i i

R diag
π π π π π

− − − 
 
 

=                   (54) 

and the extended 5 × 5 F-matrix by 
1

1
1F

ϕ ϕ

ϕ ϕ

 
 
 
 =  
 
  − 

                    (55) 

then one obtains finally the B matrix as [50] 
4 5

3 5

3 51

4 5 2 5

2 5

e
e

e

e e

e

i

i

i

i i

i

B F RF
ϕ ϕ

ϕ ϕ

π

− π

− π−

− π − π

− π

 
 
 
 = =  
 −
  − − 

    (56) 

“Pentagon” moves respectively “hexagon” ones are third order polynomial equa-
tions in many variables with much more equations than variables, but not always 
existing solutions.  

Freedman, Larsen and Wang [49] confirmed the universal applicability of the 
following approximated quantity pr (probability) for quantum computation  

( )

2

11 1
2 2

,
g

V L t
pr

t t
−

− 
  
 

=

+

                      (57) 

where ( ),V L t  is the Jones polynomial of a link L [52], 2exp it
r
π =  

 
 is a prin-

cipal root of unity with 5r =  or 7r ≥ , and g is the bridge number1. Lattice roots  
of unity, expressed in the parlance of a crystallographer, with { }1,2,3,4,6r∈  are 
excluded. Field and Simula [53] reported recently about the connection between  

Fibonacci anyons and the Jones polynomial at the fifth root of unity 2exp
5

it π =  
 

.  

 

 

1The bridge number g = 2n is the number of  -turns at each end of a capped braid (plat diagram). 
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The magnitude of the Jones polynomial [47] [54] of the Hopf link2 is related to 
the probability ( )50pr  simply by [53]  

( )
2

15
5e 0

i

HopfV pr ϕ ϕ
π

− 
= ⋅ =  

 
                   (58) 

with only two elementary physical braiding operations used before measuring 
the annihilation probability of the anyons upon fusion [53]. 

This short survey may serve to demonstrate the importance of the golden 
number for the development of quantum computation that should stimulate 
research in a direction along which way nature has always evolutionary and 
subtly worked. In this sense the seminal ideas of Penrose and Hameroff [40] [41] 
should be further elaborated (see Section 7). In the next chapter new gol-
den-mean-based quantum computer architecture was proposed copying nature’s 
most effective principles.  

10. Proposal of Quantum Computer Architecture Based on  
Fibonacci Net Microtubules 

Besides the compounds currently applied such as GaAs hetero-structures or 
graphene, which show the fractional quantum Hall effect (FQHE), the investiga-
tion of other inorganic (semiconducting) compounds is recommended, for in-
stance ferroelastic compounds or compounds that show Fibonacci-like unit-cell 
decoration [55] [56]. Interfacial twin walls act as sink for charge carriers or defects 
generating locally superconductivity or ferroelectricity as striking properties [57]. 
Fibonacci unit-cell tailoring was displayed in Figure 7. Geometric relations (Fi-
bonacci relations) between these cells can be followed by studying [55] [56] re-
spectively in the Appendix. The small black hexagonal cell (sub-cell) is rotated  

by an angle of 5atan 30 13.898
3 3

α  
= − = 

 
   to generate the blue outlined  

unit-cell with lattice parameter a that has 13 times the volume of the small cell. 
One may repeat this procedure to obtain a super-cell and so on. Furthermore, it 
should be possible to roll up this 2D net into a microtubule (Figure 8) and plug 
tubules with different radii or orientation into each other to produce a mul-
ti-shell structure. The starting small cell is then helically wound at the twist angle 
α. It needs 13-times the small cell lattice parameter asub to reach again identity 
with a large cell lattice point. In this way the diameter of the smallest geometri-
cally possible microtubule is calculated to be  

( )1 13 cos cos 3.5sub subd a a aα≈ π =⋅ ⋅ ⋅ π . Interesting is 6 21 ad = ⋅
π

 showing a 

further Fibonacci number. By a full turn one gains a height in filament direction 

of 1
39
2 sub subh a a= ≈ π⋅ . If you look through the microtubule perpendicular to 

the filament direction, you will see the mirror image on the back somewhat offset. 

 

 

2One speaks of a Hopf link, representing a (2, 2)-torus link, when two circles are linked together 
with a crossing number of two. 
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Figure 7. Fibonacci arrangement of a hexagonal net and its mirror image [55] [56]. The 
light-blue outlined unit-cell contains 13 sub-cells, offset by an angle of α = 13.9˚.  
 

 
Figure 8. Helically twisted microtubule projected down the filament direction with 13 
light-blue atoms or atom groups on sub-lattice positions. 
 

In practice it may be a sophisticated task to produce such a tubule, but nowa-
days it should be possible. The future will show whether such a composite is ap-
plicable for QC, after the right compound with optimal physical properties is 
found. One could start with doped graphene rolled up in the explained Fibonacci 
twisting. The Kitaev honeycomb lattice approach may be applied in an extended 
form to this special lattice variant [58]. 

Interestingly, the helically twisted tubulin microtubules show strongest rein-
forcement of the ordered pattern when the protofilament number n equals 13 
[59] [60]. This supports the proposal for a twisted Fibonnaci net as displayed in 
Figure 7. 

A very stimulating question is what happens if the microtubule is compressed 
or dilated due to vibration in filament direction finally going through an in-
commensurability state represented by ( )25 113 2 13.0901699ϕ ϕ−+ = + =   in-
stead of 13 twist steps (see Appendix). One may tentatively characterize such a 
behavior also by a phase transition. A highly effective quantum computer could 
possibly be realized based on such a principle. Besides the explained longitudinal 
adaption of the twisted net, its sense of rotation, optimal diameter, and the free-
dom given by the decoration of the net itself, there are many more degrees of 
freedom, if one constructs a hexagonal lattice of such 13-step microtubules with 
non-hexagonal internal symmetry. Neighboring filament can be rotated one again 
the other violating the hexagonal symmetry. In addition, the border of the as-
sembled filaments may be important. This is what nature has already optimized 
to equip its creatures with perception, memory and intelligence.  
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11. Conclusions 

This contribution reviewed and extended results of different scientific disciplines 
that involve the golden mean φ as very important number of nature. It covered 
especially phase transitions governed by the fifth power of φ, found in Baxter’s 
hard lattice approaches of statistical mechanics as well as in energy density rela-
tions of the cosmos, comparing results of the ε-infinity theory of El Naschie with 
the conclusive findings of Suleiman’s scale-free information relativity theory 
(IRT) besides Hardy’s quantum entanglement probability. Also superconductiv-
ity is described as an inherently fractal property connected with the interaction 
of two moving electrons entangled and finally paired by way of their dark wavy 
surroundings. Since Klein’s research on the icosahedron many others solved and 
combined fundamental scientific questions beyond icosahedral structures. From 
Tammes problem of decorating a unit sphere with hard circles one may be guided 
to viral morphology as well as phase transition, self-assembly and reproduction 
of viruses. Are there connections between the energy density of the cosmos with 
Tammes problem? 

The golden mean is involved in the development of modern topological quan-
tum computation, too. The performance of topological quantum computation 
with Fibonacci anyons can give a vague idea of how the human brain actually 
processes and stores information. It may be highly interesting to develop artifi-
cial self-assembling structures based for instance on the tubulin protein or vi-
ruses that can form helically wounded microtubules with the ability to store and 
to process information. A proposal was made for a twisted microtubule tailors 
from a rolled up Fibonacci net. Quantum computation is easier understandable, 
if one accepts the suggestions of Suleiman that quantum entanglement is a local 
realistic phenomenon “where each moving particle will be permeated by the 
dark matter halo of the other one making the two physically entangled” [15]. 
Essential suggestions of Irvin and scientific fellows about the golden ratio as a 
fundamental constant of nature could be ennobled by considering the IRT theory 
[8] [61]. The author wants to encourage “down-to-earth” physicists to follow 
and complete these suggestions and the perspective views of the present author, 
including the proposed change of some important physical constants [19] [62]. 
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Appendix 

Roots of unity: By solving the quartic polynomial ( ) 4
5 0

n
nx xφ
=

= ∑  one yields 
the four primitive roots of unity iω  (i = 1 to 4) here notably expressed by terms 
of the golden mean 

2 1
1,2 1 2

2 2 2 2
i iϕ ϕω ϕ ϕ− −= ± + = ± +                 (59) 

1 1
2

3,4 1 2
2 2 2 2

i iϕ ϕω ϕ ϕ
− −

= − ± + = − ± −               (60) 

About the Fibonacci number 13: This number is very special because its 
square root, coming along as the unit-cell—sub-cell parameter ratio of the Fi-
bonacci net approach, can be approximated by 12 ϕ−+  

113 3.60555 2 3.6180339887ϕ−= ≈ + =              (61) 

Furthermore, the exact adjustment connects the number 13 with the fifth 
power of φ, which number was the main concern of this contribution 

1 1 52 5 13 13.0901699 3.6180339887ϕ ϕ ϕ− −+ = = + = =     (62) 

When adding to the Hardy function [14] respectively Suleiman’s matter ener-
gy density relation [9] an amount of 3 as a solely mathematical procedure, for 
the present without physical background, giving then the maximum of 5ϕ  in-
stead of 5ϕ  at x ϕ= , the function is changed to 

( ) ( )
( )

21
3

1
x x

f x
x

−
= +

+
                      (63) 

An exceptional result is obtained for the x value at zero of this function 

( )3 3 32 1 010 10 10 5 2.59867450788 12.993372 13
3
5x = + + = × = ≈    (64) 

Crystallography of the Fibonacci 2D-Lattice: The reciprocal sub-cell is put 
up according to [55] by the strongest hexagonal basis reflections 3140  and 
5270 . Their Miller-Bravais index relations represent Fibonacci numbers respec-
tively products of them 

( ) 2 23140 : 13h k hk+ + =                     (65a) 

( ) 2 25270 : 39 3 13h k hk+ + = = ×                  (65b) 

Also remarkable, the sine of the twist angle 13.898α =   can be approximated 
well by the ratio of π and number 513 ϕ+  

( ) ( )5sin 13.898 0.240192 0.239996 sin 13.886
13 ϕ

π
= ≈ = =

+
 

  (66) 

The Fibonacci net can be generated by application of symmetry operations of the 
two-dimensional symmetry group p6. One needs three positions to get the 13 
lattice points. Two general six-fold positions with coordinates in fractions of again  

13, besides the origin, yield the lattice points: 1 10, 0x y= = ; 2 2
4 3,

13 13
x y= = ; 

3 3
5 7,

13 13
x y= =  (Figure 9). 
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Figure 9. Illustration of the three differently colored atomic positions of the 2D Fibonacci 
net.  
 

Cabinet of curiosities: With this title Fang et al. [63] published a result con-
cerning the offset angle of chained aggregates of tetrahedra with coincident faces 
given by the relation 

13 1arccos 15.5224
4

ϕβ
− −

= = 
 



                  (67)
 

However, one can approximate this angle very well by a relation that uses the 
fifth power of φ 

( )53 arcsin 15.52015β ϕ≈ ⋅ = 

                   (68) 

Geometric interpretation of φ5: The angle of / 3 5.173β = 

  is also near 
the difference of the half inner angles between pentagon and hexagon being 
36 30 6− =   . The difference in the triangle areas between both regular poly-
gons yielded a value near 5 0.090169943ϕ =   

26
2

5

6 5 4 0.5
13 1 0.088917221

A aA
a

ϕ
 

− = − + =  
 + 

       (69) 

where 6A  and 5A  are the full areas of the hexagon respectively pentagon with 
edge length a . When the pentagon is only slightly rotated about the edge against 
the hexagon plane, and then the projected area is subtracted, one can well adapt 
the exact value of 5ϕ . 
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