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Abstract 

The concept of a pure Nash equilibrium (NE) for a noncooperative game is 
simpler than that of a mixed NE, which always exists. However, pure NEs 
probably have more practical significance even though such a game may not 
have a pure NE. An efficient algorithm is presented here to determine wheth-
er an n-person game in normal form has a pure NE and, if so, to obtain all 
NEs. This algorithm uses the notion of regret, and the payoff matrix (PM) is 
transformed into a regret matrix (RM)—a loss matrix with an intuitive inter-
pretation. The RM has the property that an action profile of the PM is a pure 
NE if and only if ( )0, ,0  is the corresponding element of the RM. The 

computational complexity of the algorithm is ( )O N  in the number of indi-

vidual utilities N in the PM, and so it is substantially faster than a total enu-
meration. 
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1. Introduction 

In a Nash equilibrium (NE) for an n-person game, every player has a strategy 
that maximizes his payoff for the other n − 1 players’ strategies. In other words, 
no player can unilaterally change his strategy in an NE (i.e., with no change of 
strategy by the other players) and improve his payoff. This stability is the rea-
son an NE is termed an equilibrium. The NE thus models selfish behavior in 
which each player wants to maximize his payoff for any given set of strategies 
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for the other players. Nash’s fundamental result for a game with a finite number 
of actions for each player was that every n-person noncooperative game has an 
equilibrium in mixed strategies, though perhaps not in pure strategies. It should 
be recalled that a mixed strategy for a player is an assignment of probability to 
each of the player’s possible actions, with a pure strategy being a special case 
where one action has a probability of 1 and the rest have probabilities of zero. 
The joint mixed strategies for the players then determine expected payoffs for 
each player.  

The NE has found application in fields as diverse as economics (Myerson, 
1999), computing (Chen, 2015), evolutionary biology (Kastampolidou & Andro-
nikos, 2020), medicine (Zhang, Shan, Gao, & Jia, 2019), psychology (DeDreu, 
Giacomantonio, Giffin, & Vecchiato, 2019), and artificial intelligence (Fragkos, 
Tsiropoulou, & Papavassiliou, 2020). The efficient computation of an NE has 
thus been considerably studied. Most work, however, has focused on the com-
putational complexity for finding mixed NEs, whose existence is guaranteed by 
Nash’s existence theorem (Nash, 1951). Despite this fact, it remains unknown 
whether a mixed NE can be computed in polynomial time. However, Papadimi-
triou (1994) has defined the complexity class PPAD to include this problem, and 
Daskalakis, Christos, and Papadimitriou (2009) have shown that the computa-
tion of a mixed NE is PPAD-complete. 

In addition to the computational difficulties associated with mixed strategies, 
their interpretation is controversial. For example, both von Neumann & Mor-
genstern (1944) and later Nash (1953) considered a randomizing process an es-
sential part of a mixed strategy, a requirement that Aumann (1985) and Rubins-
tein (1991) considered problematic since the reasons and methods for the play-
ers randomizing their decisions were not specified. Aumann and Brandenburger 
(1995) later viewed a Nash equilibrium as an equilibrium in beliefs, rather than 
actions. More recently, Nahhas and Corley (2018) interpreted mixed strategies as 
the allocation of resources. 

However, the principal advantage of mixed strategies seems to be theoretical. 
They provide NEs when none exist in pure strategies and allow for the develop-
ment of a rich mathematical theory. Nonetheless, practitioners are frequently 
ambivalent towards mixed strategies due to the lack of a consistent interpreta-
tion and to the current difficulty (if not impossibility) of computing them except 
for relatively small games. 

On the other hand, pure NEs are not guaranteed to exist. Though conceptual-
ly simpler than mixed NEs, the associated computations appear even more dif-
ficult (Gottlob, Greco, & Scarcello, 2005). In general, determining whether a fi-
nite game has a pure Nash is known to be tractable in normal form but 
NP-complete in other representations such as graphical form (Gottlob, Greco, & 
Scarcello, 2005). Recent algorithms for determining whether an n-person game 
in normal form has a pure NE and, if so, for determining all NEs, have been de-
veloped in (Buttler & Akchurina, 2013), (Barrios, Luna, & Balcazar, 2016), and 
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(Zaman, Elsayed, Ray, & Sarkerr, 2018), for example. In contrast to these pre-
vious approaches, the algorithm presented here uses the concept of regret, which 
is essentially an opportunity cost, and a regret matrix. 

The use of a regret matrix in single-agent decision making is surveyed in (Ya-
ger, 2004), (Taha, 2017), and (Mishra & Tsionas, 2020). For games, regret has 
been used in (Deligkas, Fearnley, Savani, & Spirakis, 2017), (Zhang, Chen, & 
Chang, 2020), (Farina, Kroer, & Sandholm, 2019), and the references therein, 
but apparently not as applied here. Utilizing regret, we present here an efficient 
algorithm for computing a pure NE for a normal form game. Normal form is the 
most fundamental representation of a game (Daskalakis & Leyton-Brown, 2009) 
since all other representations of finite games, such as extensive form, can be 
encoded in it.  

Consider now the game ( ) ( )( ), ,n i ii N i N
G I S u

∈ ∈
=  in normal form, where

{ }1, ,I n=   is the set of players, iS  is the finite set of 2im ≥  actions (i.e., 

pure strategies) for player i, and ( )iu s  is the utility of player i for an action 

profile ( )1, , n jj Is s s S S∈= ∈ =× . The NE is defined as follows, where an in-

complete strategy profile ( )1 1 1, , , , ,i i i ns s s s s− − +=    denotes a member of 

{ }\i jj I iS S− ∈=× . With this notation and terminology, an NE for nG  is now de-

fined. 
Definition 1. The action profile *s  is an NE of nG  if and only if  

( ) ( )* *max , ,
i i

i i i is S
u s u s s−∈

=  for all i I∈ .               (1) 

In Section 2 we define the regret matrix (RM) corresponding to the payoff 
matrix (PM) for nG  and prove that a joint action *s  is a NE if and only if 
( )0, ,0  is the corresponding entry of the RM. In Section 3 the approach of 
Section 2 is formalized as an algorithm to obtain all NEs for nG  if any exist. In 
Section 4 a simple computational example is presented for n = 3.  

2. The Regret Matrix 

The regret function ir  is defined as a transformation of player i’s payoffs to 
losses for a given action profile ( ),i is s s−= . 

Definition 2. For the game nG , the regret incurred by any player i for 
( ),i is s s−=  is  

( ) ( ) ( )max  , ,
i i

i i i i i i it S
r s u t s u s s− −∈

= −  for all i I∈ .           (2) 

The regret incurred by player i for an action profile ( ),i is s−  is thus the dif-
ference between the best payoff that player i can obtain for fixed is−  and the 
payoff that player i will obtain for ( ),i is s− . The following result is needed for 
the algorithm.  

Result 1. The pure strategy profile *s  is a NE for the game nG  if and only if 
the ( )* 0ir s =  for all i I∈ .  

Proof. The strategy profile *s  is an NE for nG  if and only if *s  satisfies (1) 
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of Definition 1. But (1) holds if and only if ( )* 0ir s =  in (2) for all i I∈ .  
We next define the regret matrix (RM) of nG . 
Definition 3. The regret (RM) of nG  is the matrix obtained from its PM by 

replacing ( ) ( )( )1 , , nu s u s  with ( ) ( )( )1 , , nr s r s  for all s S∈ . 
The associated game ( ) ( )( )ˆ , ,n i ii N i N

G N S r
∈ ∈

=  with payoff matrix RM is not 
equivalent to nG  in the sense of Myerson (1991) but has the same NEs. The re-
gret matrix provides an efficient approach for determining if a pure NE exists 
and, if so, obtaining them. 

3. The Algorithm 

Consider a game nG  as above, and denote the jth strategy of player i by
, 1, ,j

i i is S j m∈ =  . The following pseudocode describes the algorithm 
PURECOMP for obtaining the set of pure NEs for nG  from its RM. 

1 ,  1i j← ←   
While i n≤  do 
While ij m≤  do 

From (2), compute ( ),j
i i ir s s−  for all i is S− −∈ .          (3) 

( ) ( ), ,j j
i i i i i ir s s u s s− −←  for all i is S− −∈   

End While 
End While 

( ){ }: 0, 1, ,iP s S r s i n= ∈ = = 



. 

The set of pure NEs of nG  is P, which may be empty. From (3) the computa-

tional complexity of PURECOMP is ( )O N , where i
i I

N n m
∈

= ∏  is the size of  

the input to the game. It is the number of individual utilities ( ) , 1, ,iu s i n=   
of the n players for all possible action profiles s S∈ . In particular, for 

, 1, ,im m i n= =  , then nN nm= . PURECOMP is thus linear in the input size. 
It should be noted, however, that the input size itself is exponential in the num-
ber of players. On the other hand, for example, Daskalakis and Leyton-Brown 
(2009) propose an enumeration using Definition 1 with complexity  

2

i
i I

O m
∈

  
     
∏ , which is at least 2n

i
i I

O m
∈

 
 
 
∏  because 2im ≥  for all i I∈ . But 

2n
i i

i I i I
O m O n m

∈ ∈

   >   
   
∏ ∏  for 1n ≥  since 2 2n n

i i
i I i I

m n m n
∈ ∈

=∏ ∏ , and so 

PURECOM is considerably faster. 

4. Example 

For n = 3 we use the notation of Section 3 with 1 2 3 2m m m= = =  and consider 
the game 3G  with the PM of Table 1 below. The RM for 3G  is then obtained 
from the PM via PURECOMP and shown in Table 2. The unique pure NE for 

3G  is ( )* 1 2 2
1 2 3, ,s s s s=  with associated payoffs ( ) ( )( ) ( )* *

1 ,5,, , 13nu s u s =
.  
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Table 1. PM for G3.  

Player 3 

Player 
1
3s  

Player 2 

2
3s  

Player 2 

1 1
2s  2

2s  1
2s  2

2s  

1
1s  (3, 1, 2) (3, 4, 0) (6, 3, 0) (3, 5, 1) 

2
1s  (1, 4, 5) (2, 2, 3) (2, 4, 4) (−1, 2, 3) 

 
Table 2. RM for G3. 

Player 3 

Player 
1
3s  

Player 2 

2
3s  

Player 2 

1 1
2s  2

2s  1
2s  2

2s  

1
1s  (0, 3, 0) (0, 0, 1) (0, 2, 2) (0, 0, 0) 

2
1s  (2, 0, 0) (1, 2, 0) (4, 0, 1) (4, 2, 0) 

5. Conclusion 

An algorithm PURECOM was presented here to determine whether an n-person 
game in normal form has a pure NE and, if so, to obtain all NEs. In PURECOM 
the payoff matrix is transformed into a regret matrix. The RM has the property 
that an action profile of the PM is a pure NE if and only if ( )0, ,0  is the cor-
responding element of the RM. The computational complexity of the algorithm 
is ( )O N  in the number of elements N of the PM, which is 2n n  times faster 
than a complete enumeration.  

PURECOM thus makes two contributions. First, it determines a pure NE by 
implementing the intuition that an equilibrium should not cause regret for any 
player. This approach undoubtedly has pedagogical applications. Second, it gives 
a computational procedure for determining all pure NEs, if any exist, for games 
with normal form. PURECOM is unlikely to be improved except for payoff ma-
trices with special structure such as certain symmetries.  
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