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Abstract 
Nonlinear prices are commonly observed in market economies. This paper 
investigates nonlinear pricing under general conditions. It explores how non-
linear pricing can arise under nonconvexity. The arguments are presented in 
the context of an optimization problem, where a separating hypersurface 
provides information on pricing under general nonconvexity. The analysis 
applies to efficiency assessments, noting that Pareto efficiency can be ex-
pressed as the maximization of aggregate benefit. When nonconvexity re-
quires a nonlinear separating hypersurface, this implies that nonlinear pricing 
becomes an integral part of efficiency analysis. This evaluation applies to 
nonmarket goods (e.g., the pricing of carbon emission) as well as market 
goods. We show how nonlinear pricing depends on the nature of nonconvex-
ity. We discuss how associated price discrimination schemes can be imple-
mented to support efficient allocations. 
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1. Introduction 

Studying prices is a cornerstone of economic analysis. The economics of prices is 
well understood under convexity. This includes the linkages between prices and 
efficiency in market economies (e.g., see Debreu, 1959; Mas-Colell et al., 1995), 
leading to the argument that marginal cost pricing is efficient in competitive 
markets. This also includes the evaluation of nonmarket goods, their prices be-
ing assessed as the marginal value of the goods (e.g., the evaluation of the price 
of carbon emission; see Nordhaus (2019)). While these results hold under con-
vexity assumptions, they do not apply under nonconvexity. Indeed, under con-
vexity, the separating hyperplane theorem holds, and a separating hyperplane 
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can be used to define Lagrange multipliers representing relative prices (e.g., Ta-
kayama, 1985). But the separating hyperplane theorem does not hold under 
nonconvexity, thus raising questions about the validity of the standard Lagran-
gian approach and of the associated price evaluation. Such arguments have sti-
mulated interest in revisiting and generalizing previous approaches under non-
convexity (e.g., Gould, 1969; Giannessi, 1984, 2005). A key argument is noncon-
vexity implies a need to replace separating hyperplane with a separating nonli-
near hypersurface. Being nonlinear, a separating hypersurface implies nonlinear 
pricing. This is a key motivation for this paper: nonconvexity requires an explicit 
investigation of nonlinear pricing.  

To stress the importance of this issue, note that nonconvexity can arise from 
multiple sources. An example is the case of a firm under increasing return to 
scale (IRS) in production activities. IRS is a form of nonconvexity that arises in 
the presence of fixed cost, making it rather common. But the efficiency of mar-
ginal cost pricing does not hold under IRS. Indeed, under IRS and competition, 
marginal cost is less than average cost, implying that marginal cost pricing ge-
nerates negative profit, which is unsustainable. Another example of nonconvex-
ity includes the presence of externalities: as showed by Baumol and Bradford 
(1972) and Starrett (1972), externalities are a source of nonconvexity. In general, 
the presence of nonconvexity can invalidate the efficiency of marginal cost pric-
ing. This motivates the need to consider nonlinear pricing. The fact that nonli-
near pricing is commonly observed in market economies (e.g., Wilson, 1993) in-
dicates the importance of refining our understanding of nonlinear pricing.  

This paper examines how nonlinear pricing arises under nonconvexity. The 
analysis is developed in the context of a constrained optimization problem under 
nonconvexity. Note that exploring these issues is not new. For example, genera-
lized Lagrangian approaches have been explored to deal with nonconvexity (e.g., 
Gould, 1969; Rockafellar, 1974; Giannessi, 1984, 2005; Rubinov et al., 2002). Our 
analysis builds on the work by Gould (1969) and Giannessi (1984, 2005) who 
studied the linkages between a saddle-point of a Generalized Lagrangian and the 
solution to a constrained optimization problem. A key insight is to allow for 
nonlinear penalty functions in the generalized Lagrangian, penalty functions 
that provide a representation of a separating hypersurface that exists under gen-
eral nonconvexity. It is well known that Lagrange multipliers can be interpreted 
as “marginal values of the constraints” under convexity (e.g., Takayama, 1985). 
This interpretation continues to apply to a Generalized Lagrangian approach 
under nonconvexity. Indeed, the slopes of the penalty functions provide meas-
ures of shadow prices under general conditions. But penalty functions being 
nonlinear imply nonlinear pricing. Importantly, the shape of the penalty func-
tions (and hence the type of nonlinear pricing) depends on the nature of non-
convexity (as the penalty functions must satisfy the separation property).  

This paper studies the nature of nonlinear pricing in the context of a general 
constrained optimization problem. The analysis also applies to the evaluation of 
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economic efficiency. Indeed, following Luenberger (1995), Pareto efficiency can 
be expressed as the maximization of aggregate benefit subject to aggerate de-
mands not exceeding aggregate supplies. Chavas and Briec (2012) and Chavas 
(2017) show that this result continues to hold under nonconvexity. In this case, 
pricing involves assessing the “marginal values” of the constraints. Under non-
convexity, this means that nonlinear pricing becomes an explicit part of effi-
ciency evaluation. This argument is relevant to nonmarket allocation in which 
case our analysis applies to the shadow prices of nonmarket goods (Rosen, 1974) 
and contracts (Salanié, 1999). It also applies to market allocations where market 
prices now play two roles: 1) they must clear the market; and 2) they must pro-
vide proper incentives to achieve Pareto efficiency. Our analysis provides useful 
insights into this second role when efficiency under nonconvexity requires non-
linear pricing.  

This paper is organized as follows. Section 2 presents a general constrained 
optimization problem under nonconvexity. It also provides an example illu-
strating the challenges created by nonconvexity. The properties of pricing under 
nonconvexity are discussed in Section 3, where a generalization of the envelope 
theorem is presented. Section 4 discusses the economic implications of our 
analysis for nonlinear pricing and price discrimination.  

2. Constrained Optimization under Nonconvexity 

Consider the following constrained optimization problem: 

( ) ( ) ( ){ }* max : ,xf b f x g x b x X= ≤ ∈               (1) 

where nX ⊂  , :f X →   is the direct objective function,  
( )1, , m

mb b b= ∈   and : mg X →   define m constraints denoted by 
( ) { }, 1, ,j jg x b j m≤ ∈  . Letting ( ) ( ) ( ){ }* arg max : ,xx b f x g x b x X∈ ≤ ∈ , 
( )*f b  in (1) is the indirect objective function satisfying ( ) ( )( )* *f b f x b= . 

The feasible set in (1) is ( ) ( ){ }: , nS b x g x b x= ≤ ∈ . Throughout the paper, 
we assume that the functions f and g are continuous and that the feasible set 
( )S b  is non-empty and closed. The optimization problem (1) is well unders-

tood under convexity where ( )f x  is a concave function and ( )S b  is a con-
vex set (e.g., Takayama, 1985). Our analysis focuses on the case of nonconvexity 
where the ( )f x  is not necessarily concave and/or the feasible set S is not nec-
essarily convex.  

Problem (1) covers a wide range of economic applications. An example is 
where ( )f x  is a profit function and (1) represents profit maximization for a 
firm. In an industry exhibiting increasing returns to scale (IRS), the underlying 
technology would be nonconvex. As noted in the introduction, under IRS and 
marginal cost pricing, competitive firms would fail to generate a positive profit, 
indicating that marginal cost pricing cannot be efficient. Another example is 
where ( )f x  is the earning capacity of a household and (1) represents the 
choice of time allocation in the maximization of household income.  
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A third example is the case of economic efficiency. To see that, consider the 
case where ( ),x y z= , ( )1, , Ky y y=  , m

ky +∈  denotes the consumption of 
m goods by the k-th consumer, { }1, ,k K∈  , K is the number of consumers, 

mz Z∈ ⊂   are m aggregate production goods and Z is the feasible set for z. 
Letting ( )k kf y  be the benefit function obtained by the k-th consumer, Luen-
berger (1995) showed that Pareto efficiency implies the maximization of aggre-
gate benefit. Thus, a Pareto efficient allocation ( ),x y z=  must satisfy the 
maximization problem (1) where  

( ) ( )1
K

k kkf y f y
=

= ∑                     (2a) 

denotes aggregate benefit, and feasibility is represented by the constraints  

ik K y z b
∈

≤ +∑ ,                     (2b) 

where b denotes initial endowment and ( )1, , , mK
Kx y y z Z+= ∈ ×  .1 Equation 

(2b) imposes the restriction that aggregate demand for goods does not exceed 
aggregate supply. Luenberger (1995) showed that Pareto efficiency implies the 
maximization of aggregate benefit given (1)-(2) under convexity (i.e. when the 
benefit functions ( )k kf y  are concave2 and the set Z is convex. As shown by 
Chavas and Briec (2012) and Chavas (2017), this argument continues to apply 
under nonconvexity,3 when the benefit functions ( )k kf y  are not concave 
and/or the set Z is nonconvex. As discussed in the introduction, there can be 
multiple sources of nonconvexity for Z (including the case where production 
technology exhibits increasing return to scale).  

The marginal effects of b on ( )*f b  in (1) have been a great interest. In gen-
eral, these marginal effects are the shadow prices of the constrains in (1). This 
interpretation also holds in the general evaluation of efficiency associated with 
(1)-(2). This shadow price interpretation is very useful when the goods are 
nonmarket goods (e.g., carbon emission) or when allocation decisions are made 
by nonmarket institutions (e.g., government or contract). In such cases, evaluat-
ing the marginal effects of b on ( )*f b  can provide useful guidance in policy 
making and contract design. Alternatively, when the goods are allocated in a 
market economy, then these marginal values become market prices. Given the 
strong linkages between (1)-(2) and efficiency, our analysis examines the linkag-
es between market pricing and efficiency under nonconvexity. In all cases, we 
want to answer the questions: What are the marginal values of the constraints in 
Equation (1)? And what are the implications for pricing? The answer to these 
questions is well known under convexity. But it is more challenging under non-

 

 

1Note mz Z∈ ⊂   are m aggregate production goods. When the goods are produced by J firms, 

then aggregate production satisfies 
1

J

jj
z z Z

=
= ∈∑  where jz  is the production of the j-th firm. In 

this context, the set Z allows for externalities in production activities among firms.  
2Luenberger (1995) showed that the concavity of the benefit functions ( )k kf y  holds under qua-
si-concave preferences.  
3As noted in the introduction, nonconvexity can arise in the presence of externalities (Baumol & 
Bradford, 1972; Starrett, 1972). Thus, our analysis of efficiency also applies under production exter-
nalities. 
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convexity. As discussed below, nonconvexity means that we must allow for non-
linear pricing.  

Following Gould (1969), consider a generalized Lagrangian associated with 
(1). Define a function h H∈ , where  

( ) ( ) ( ){ }: , ; 0 0|n mH h h a h a a a h′ ′ ′ ′ ′ ′= → ≥ ∀ ≥ =  , H being the set of 
non-decreasing functions h mapping n  into m  and satisfying ( )0 0h = . 
For a given b and treating the function h as a penalty function, define the Gene-
ralized Lagrangian 

( ) ( ) ( ) ( )( ), ,L x h b f x h b h g x= + − ,              (3) 

where x X∈  and h H∈ . We allow the penalty function h to be nonlinear. 
Note that, under convexity (where X is a convex set and the functions f and g are 
concave), the separating hyperplane theorem applies, the function h can be tak-
en to be linear, and Equation (3) reduces to the standard Lagrangian 
( ) ( ) ( ), , i i ii ML x b f x b g xλ λ

∈
= + −  ∑ , where ( )1, , m

mλ λ λ += ∈   is a vector 
of nonnegative Lagrange multipliers (e.g., Takayama, 1985). But such arguments 
no longer apply under nonconvexity, inducing us to examine the case where the 
function h is nonlinear. This is illustrated in Figure 1.  

Figure 1 represents a maximization problem where 2n = , the function f is 
increasing and the feasible set S has an upper bound. Figure 1 shows that the 
global solution is at point O. In the context of efficiency analysis under (2), the 
line ABC would be an indifference curve giving the set of points that generate 
the same value of as the optimum value *f ; and the curve DEF would be the 
boundary of the production possibility set. Figure 1 represents a situation of 
nonconvexity where the objective function f is nonconcave and the feasible set S 
is nonconvex. Under nonconvexity, Figure 1 shows that the separating hyper-
plane theorem does not apply. Indeed, at point O, the line GG’ is tangent to both 
the upper bound of the feasible set (the curve EOF) and the indifference curve in 
the neighborhood of point O (the line BC). But the hyperplane GG’ cuts the 
curve DEF and enters the feasible set close to point G’. This occurs because of 
the nonconvexity of the feasible set ( ){ }: 0,S x g x x X= ≤ ∈ . Thus, under non-
convexity, the line GG’ is not a globally separating hyperplane. Without this 
global separation property, the standard Lagrangian approach fails to provide a 
proper characterization of a global solution to (1). This failure also applies to the 
global validity of Lagrange multipliers as representation of relative prices.  

Figure 1 illustrates four important arguments. First, in Figure 1, the line GG’ 
still exhibits the separation property in the neighborhood of point O. Indeed, 
when limited to this neighborhood, the line GG’ stays above the boundary of the 
feasible set EF and below the indifference curve BC. It means that the standard 
Lagrangian would remain valid “locally”, i.e. in a neighborhood of the optimum 
point O. Under differentiability, this result supports the standard use of the 
Kuhn-Tucker conditions as representing a local optimum. But this positive re-
sult is undermined by the second argument: Figure 1 shows the existence of  
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Figure 1. Maximization under non-convexity.   

 
point O’, located at the tangency between the boundary of the feasible set (the 
line DE) and the indifference curve going through point O’. It means that point 
O’ is a local solution to the maximization problem (in the sense that, in a small 
neighborhood of O’, there is no other feasible point that can increase f). Again, a 
standard Lagrangian approach could identify point O’ as a local solution. The 
problem is that, comparing points O and O’, Figure 1 shows that O is the global 
solution and O’ is not (as O is located on a higher indifference curve). This illu-
strates that the standard Lagrangian approach (and its associated Kuhn-Tucker 
conditions under differentiability) can identify local solutions that are not global. 
Can this limitation be overcome? The third argument addresses this question. As 
just noted, Figure 1 shows that the line GG’ is not a separating hyperplane. But 
the nonlinear line HG exhibits the separation property. Indeed, the line HG is a 
nonlinear separating hypersurface: except at the optimum point O, it always re-
mains below the indifference curve ABC and above the boundary of the feasible 
set DEF. This indicates that a separating hypersurface always exists under non-
convexity, provided that we allow it to be nonlinear. This is a key insight we get 
from Figure 1. To the extent that a penalty function represents the separating 
function in Lagrangian approaches, it means that, in the presence of nonconvex-
ity, we must consider a nonlinear function h in the Generalized Lagrangian (3). 
The fourth argument obtained from Figure 1 is that the choice of this nonlinear 
function is not arbitrary: it must be chosen to satisfy the separation property.  

We know that, under convexity, ( )h a  can be chosen to be linear (from the 
separating hyperplane theorem), its slopes being Lagrange multipliers that re-
flect the marginal values of the constraints. When the objective function f has a 
monetary interpretation, the Lagrange multipliers are the shadow prices of the 
constraints in (1). As we show in the next section, this interpretation remains 
valid under nonconvexity with one exception: allowing ( )h a  to be nonlinear 
means that the slopes of ( )h a  (i.e., the shadow prices) are no longer constant 
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and we must consider explicitly nonlinear pricing. Figure 1 illustrates this ar-
gument. The hyperplane G’OG does not provide proper information on pricing. 
Indeed, if we were to take the slope of G’OG as measures of relative prices, then 
profit-maximizing competitive producers would improperly choose to produce 
at point D (as profit would be higher at point D than at point O). In the evalua-
tion of efficiency in a market economy, this implies that uniform pricing would 
be inefficient. Importantly, the incentive to produce would shift to point O un-
der the nonlinear separating hypersurface HOG. In other words, in the presence 
of nonconvexity, nonlinear pricing becomes an integral part of finding a global 
solution to the optimization problem (1). And when applied to efficiency analy-
sis under (2) (where f measures aggregate benefit), nonlinear pricing becomes a 
central part of an efficient allocation.  

These claims are now formalized in the context of the maximization problem 
(1). Consider the following dual problem  

( ) ( ){ }* inf sup , , : ,h xL b L x h b h H x X= ∈ ∈               (4) 

Let *
bx  and *

bh  be a solution to problem (4) that satisfy ( ) ( )* * *, ,b bL b L x h b= . 
A key issue is the relationship between ( )*L b  in (4) and the indirect objective 
function ( )*f b  in the primal problem (1). In general, a weak duality relation-
ship holds: ( ) ( )* *L b f b≥  (Rubinov et al., 2002; Giannessi, 2005). While 

( )*L b  is an upper bound to ( )*f b , this identifies ( ) ( )* * 0L b f b− ≥  as a 
“duality gap”. In this context, a “zero-duality gap” occurs when ( ) ( )* *L b f b= , 
i.e. when the primal problem (1) and the dual problem (4) have the same value. 
The following result was obtained by Rubinov et al. (2002).  

Lemma 1. There is a zero-duality gap at b if an only if ( )*f b  is upper semi- 
continuous at b. 
Lemma 1 establishes that the upper semi-continuity of ( )*f b  at b is a ne-

cessary and sufficient condition for a zero-duality gap. This condition is impor-
tant for our analysis: it guarantees a close relationship between the maximization 
problem (1) and the dual Generalized Lagrangian problem (4). Note that the 
lower semi-continuity of ( )*f b  at b involves the effect of changing the con-
straints ( )g x b≤   . As such, it is a “constraint qualification”. Other constraint 
qualifications have been proposed as sufficient conditions to obtain a ze-
ro-duality gap. They include Slater’s condition (stating that ( )int S ≠ ∅ ) and 
various rank conditions on g x∂ ∂  under differentiability (Bertsekas, 1995). 
Since lemma 1 presents a condition that is necessary and sufficient for a ze-
ro-duality gap, it follows that these other constraint qualifications are special 
cases of the condition stated in lemma 1. In other words, the upper 
semi-continuity of ( )*f b  at b is a “generalized constraint qualification”. We 
assume that it is satisfied throughout the rest of the paper. 

The following key result was first obtained by Gould (1969). 
Lemma 2. If there is a zero-duality gap at b, then the following properties 

hold: 
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( ) ( ) ( )* * * *, , , , , , , ,b b b bL x h b L x h b L x h b x X h H≥ ≥ ∈ ∈ ,        (5) 

( )*
bg x b≤ ,                         (6) 

( )( ) ( )* * *
b b bh g x h b= ,                      (7) 

( ) ( ){ }* arg min : ,b xx f x g x b x X∈ ≤ ∈ .              (8) 

Lemma 2 shows that, under a zero-duality gap, finding a saddle-point in (4) or 
(5) is equivalent to solving the optimization problem (1). Importantly, this result 
holds globally; and it holds under non-convexity. This includes as a special case 
situations where the functions f and g are convex and X is a convex set: the se-
parating hyperplane theorem then holds, h can be taken to be linear and the 
coefficients of h are standard Lagrange multipliers. As stressed in Gould (1969) 
and Giannessi (1984, 2005), Lemma 2 makes it clear how a Generalized Lagran-
gian approach can support the analysis of general constrained optimization 
problem under non-convexity. The key to this generalization is the non-linearity 
of the function h. 

Lemma 2 also presents two additional results. First, Equation (6) shows that a 
saddle-point of the Generalized Lagrangian is always consistent with the feasibil-
ity constraints ( )g x b≤ . Second, Equation (7) is a complementary slackness 
condition. It states that, at a saddle-point of the Generalized Lagrangian and for 
any constraint i M∈ , at least one of the following two conditions must hold: 1/ 
the function ( )*

ibh b  is strictly increasing in ib  and the constraint ig  is 
binding; or 2/ the constraint ig  is not binding and the function ( )*

ibh b  does 
not vary with ib  in the neighborhood of b. This condition is a generalization of 
a similar condition obtained in the standard Lagrangian approach when the 
function h is linear (e.g., under convexity). 

3. Pricing under Nonconvexity 

Lemma 2 applies to the general constrained optimization problem in (1). It 
states that a saddle-point of the Generalized Lagrangian identifies the solution to 
the maximization problem. It also involves the penalty function *

bh H∈ . As 
discussed in this section, this function provides a useful characterization of 
pricing under general conditions.  

Proposition 1. Under a zero-duality gap, consider two points mb∈  and for 
mb′∈ . Then, the following inequalities hold 

( ) ( ) ( ) ( ) ( ) ( )* * * * * *
b b b bh b h b f b f b h b h b′ ′′ ′ ′− ≥ − ≥ − .           (9) 

Proof. Under a zero-duality gap, the Generalized Lagrangian has a sad-
dle-point given in (5) for b and for b′ . Then, the second inequality in (5) eva-
luated at *

bx x ′=  implies that  

( ) ( ) ( ) ( ) ( ) ( )( )* * * * * * * * *, , , ,b b b b b b b bf b L x h b L x h b f x h b h g x′ ′ ′= ≥ ≡ + − .   (10) 

Note that 
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( ) ( ) ( )( ) ( ) ( )* * * * * *
b b b b bf x h b h g x f x f b′ ′ ′′ ′+ − ≥ = .           (11) 

since ( )*
bg x b′ ′≤  from (6) and the function ( )*

bh a H∈  is non-decreasing in a. 
Summing (10) and (11) yields the first inequality in (9). The second inequality is 
obtained by multiplying the first inequality by −1 and switching b and b′ .  

Q.E.D. 
Equation (9) shows how the change in the indirect function ( )*f b  is closely 

related to the penalty function ( )*
bh b  in the Generalized Lagrangian approach. 

When b b′ ≥ , the function *
bh H∈  being non-decreasing, Proposition 1 gives 

the following result: 
Corollary 1. When b b′ ≥ , we have 

( ) ( ) ( ) ( ) ( ) ( )* * * * * * 0b b b bh b h b f b f b h b h b′ ′′ ′ ′− ≥ − ≥ − ≥ .        (12) 

When the functions *
bh  and *f  are differentiable at b and letting b b′ → , 

the above  
Corollary gives the following result: 
Corollary 2. When the functions *

bh  and *f  are differentiable, we have 

( ) ( )* *

0bf b h b
b b

∂ ∂
= ≥

∂ ∂
.                       (13) 

where ( ) ( ) ( )* * *

lim ,b b b
b b

i i i

h b h b h b
i M

b b b′→

 
 
  

′∂ −
= ∈

′∂ −
.  

Equation (13) is a version of the envelope theorem, stating that the derivative 
of the indirect objective function ( )*f b  is equal to the derivative of the penalty 
function ( )*

bh b . Equation (13) also states that this derivative is non-negative, 
meaning that increasing b tends to increase the value of the indirect objective 
function ( )*f b , reflecting that the constraints are becoming less binding. This 
result implies that the derivative of the penalty function can be interpreted as a 
measure of “shadow prices” of the constraints. This is an important generaliza-
tion of the standard Lagrangian approach. Indeed, under convexity, the penalty 
function *

bh  can be taken to linear and ( )*
bh b b∂ ∂  reduces to the standard 

Lagrange multipliers reflecting the slopes of a separating hyperplane. Our analy-
sis establishes that such arguments generalize under nonconvexity. Indeed, the 
slopes of the penalty function *

bh  are also shadow prices of the constraints as 
well as measures of the slopes of a separating hypersurface under nonconvexity.  

Comparing (9) and (13) makes it clear that (9) is a generalization of the 
envelope theorem in several ways. First, (9) applies under general forms of non-
convexity. Second, it remains valid under any discrete change in b. Third, it 
holds without assuming differentiability of f or g.  

Thus, Proposition 1 shows that the changes ( ) ( )* *
b bh b h b ′ −   provide a gen-

eral measure of the marginal effects of relaxing the constraints by changing b in 
(1). When the objective function has a monetary interpretation, h has also a 
monetary interpretation and its gradients provide a measure of prices (or at least 
of shadow prices when applied to the evaluation of nonmarket goods). When 

https://doi.org/10.4236/tel.2020.106073


J.-P. Chavas, E. Pagani 
 

 

DOI: 10.4236/tel.2020.106073 1222 Theoretical Economics Letters 

 

nonconvexity implies that h must be nonlinear, it follows that nonlinear pricing 
become an integral part of economic analysis. Implications of these results are 
discussed next.  

4. Implications 

Our analysis makes it clear that nonconvexity requires the introduction of non-
linear pricing in economic analysis. This result implies a need to consider de-
partures from uniform pricing. Such departures are significant as they contrast 
with standard competitive markets: competitive markets are efficient under 
convexity, and they are “simple” in the sense that all market participants face the 
same market-clearing prices (e.g., Debreu, 1959). The role of prices being set to 
clear the market remains under nonconvexity. But insisting on uniform pricing 
is not appropriate under nonconvexity. Indeed, as illustrated in Figure 1, uni-
form pricing can be inefficient. As noted in the introduction, an example is giv-
en by a competitive industry where firms exhibit increasing returns to scale 
(IRS). In this case, uniform pricing is never efficient. Indeed, under marginal 
cost pricing, marginal cost being less than average cost under IRS, a competitive 
firm would make a negative profit and would have no incentive to produce. Un-
der average cost pricing, the firm would make zero profit; but under uniform 
pricing, the outcome would be inefficient (the price paid by all consumers being 
higher than the marginal cost). The efficient solution is nonlinear pricing: prices 
are not uniform across all market participants. This involves price discrimina-
tion schemes among market participants. As noted by Wilson (1993), such 
schemes are commonly observed in many markets.  

An example is the case of electricity pricing. The electricity industry faces two 
issues: 1) power plants exhibit IRS; and 2) the demand for electricity fluctuates 
over time (e.g., demand is higher during heat waves due to increased use of air 
conditioning). As just noted, this is a scenario where marginal cost pricing is not 
sustainable while average cost pricing is inefficient. The efficient pricing scheme 
is peak-load pricing: charge more for electricity during peak demands, but 
charge less off-peak periods (Dutta & Mitra, 2017; Borenstein & Bushnell, 2018). 
Charging more during peak demand is efficient in two ways: 1) it generates ad-
ditional income that can cover the difference between average cost and marginal 
cost (under IRS); and 2) it induces consumers to reduce their demand for elec-
tricity during peak periods, thus reducing the need to build costly new power 
plants just to satisfy peak demand. And charging less for electricity in off-peak 
periods is efficient if the off-peak price corresponds to marginal cost. Such a 
price discrimination scheme is a form of nonlinear pricing that can support an 
efficiency allocation under nonconvexity.  

As illustrated in Figure 1, nonlinear pricing is linked with the separation prop-
erty of h which depends on the nature of nonconvexity. A difficulty is that, while 
separating hypersurfaces always exist, they are not unique. This non-uniqueness 
makes the design and evaluation of nonlinear pricing challenging. Indeed, Fig-

https://doi.org/10.4236/tel.2020.106073


J.-P. Chavas, E. Pagani 
 

 

DOI: 10.4236/tel.2020.106073 1223 Theoretical Economics Letters 

 

ure 1 shows that the line HOG is one possible separating hypersurface; but there 
are others. Another possible separating hypersurface is the line ABOC corres-
ponding to the case of perfect price discrimination. Perfect price discrimination 
has two important properties (Tirole, 1988): 1) it is efficient (as the line ABOC is 
a separating hypersurface that goes through the efficient point O); and 2) it ge-
nerates the largest possible payment by consumers. This last property underlines 
the fact that price discrimination schemes have implications for income distri-
bution (as further discussed below). But perfect price discrimination is very dif-
ficult to implement: by charging each unit of each good a different price (as illu-
strated by the slope of the line ABOC in Figure 1), it requires a very large 
amount of information, information that is typically not available to anyone. For 
this reason, even if they are efficient, perfect price discrimination schemes are 
not realistic nor observed. This raises the question: can we find some “simple” 
price discrimination schemes that are efficient? In the context of the optimiza-
tion problem in (1)-(2), this involves identifying a nonlinear penalty function 
that satisfies the separation property. One step in this direction is the Aug-
mented Lagrangian approach proposed by Hestenes (1969) and Rockafellar 
(1974). In this context, allowing h to be a quadratic function is one possibility. 
But Figure 1 illustrates choosing a quadratic function for h would fail to satisfy 
the global separation property. This reflects the fact that, while polynomial func-
tions provide good local approximation properties, they may not be good choic-
es for penalty functions.  

One attractive possibility is to consider spline function for h. A spline func-
tion can provide a global approximation to any function (Ahlberg et al., 1967). 
This is important in the search for flexibility in the evaluation of separation 
functions. Linear spline functions may be particularly appealing: having the 
property of being piecewise linear, they would greatly simplify their implications 
for pricing. In this case, the analysis would identify multiple pricing regimes: 
prices would be constant between spline knots but they would change across 
spline knots as one move across regimes. Uniform pricing would be a special 
case when there is a single regime. The simplest form of nonlinear pricing would 
involve linear splines with two regimes. This corresponds to two-part tariff 
schemes commonly observed (e.g., retailers asking consumers to pay a “mem-
bership fee” on top of purchase charge; infant-industry protection policies that 
charge a different price on the domestic market versus the world market). In 
these examples, the pricing would be efficient if the lower price is set at marginal 
cost while the higher price generates added revenue that covers the cost of pro-
duction (e.g., to pay for fixed cost under IRS). More generally, linear splines can 
represent flexible pricing schemes obtained by increasing the number of regimes. 
Examples include volume discounts (where the price is lower as the quantity 
purchased increases) and tariff-rate quotas commonly used in trade policy 
(where tariff rates increase in a stepwise manner as import quantities increase). 
Under a spline parametrization of h, the optimal pricing scheme could then be 
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obtained by searching for the parameters that would satisfy a saddle-point of the 
Generalized Lagrangian in (3). How many regimes are needed to satisfy the se-
paration property? Unfortunately, there is no general answer to this question: 
the need for nonlinearity in h depends on the nature of nonconvexity, meaning 
that the form of nonlinear pricing is expected to vary across situations. This 
identifies a need for more empirical research on this topic.  

An important issue in nonlinear pricing is: if prices are not uniform, who is 
going to pay for the lower prices and who is going to pay for the higher prices? 
When consumers are not precisely targeted, consumers can be offered multiple 
pricing options, letting them decide which option they prefer. In this case, con-
sumers’ self-selection plays a role. Examples abound (e.g., Wilson, 1993). Under 
volume discount, the unit price declines with the volume purchased. Then, each 
consumer decides whether it is worth getting a lower price on a larger purchase 
(e.g., is it worth buying two pairs of shoes when one can get a second pair at a 
reduced price?). In purchasing an airline ticket to travel from one city to another, 
each consumer decides whether they are willing to pay a higher “first class price” 
involving some “added services” compared to a lower “economy price”. In these 
cases, heterogeneity of consumers in their ability to choose prices and their wil-
lingness to pay for “added services” play a role in the extent and feasibility of 
possible price discriminations. This can be problematic when most consumers 
choose the low price and the few consumers who choose higher prices do not 
generate enough income to cover the total cost of production (e.g., including the 
cost of added services as well as fixed cost under IRS).  

This issue can be resolved in situations where the price discrimination scheme 
can be more precisely targeted. And recent advances in information technology 
have contributed to expanding the possibilities for firms to implement price tar-
geting. Again, examples abound. Offering senior discounts is price discrimina-
tion based on age. Universities do price discrimination on the basis of geograph-
ical origin when tuitions differ between in-state and out-of-state students. Dis-
criminating between domestic firms and foreign firms is commonly observed in 
trade policy. Under precise targeting, such price discrimination schemes in-
crease the prospects to find nonlinear pricing schemes that are efficient. For 
example, under fixed cost and IRS, efficient nonlinear pricing would involve 
marginal cost pricing for some market participants but higher prices for other 
market participants (to generate enough income to cover the fixed cost). This is 
very different from uniform pricing under competitive markets. Cleary, attain-
ing efficiency under nonconvexity can require departure from uniform pricing. 
But price discrimination schemes are not always efficient. Indeed, they can be 
part of rent-seeking behavior in imperfectly competitive markets (Tirole, 1988), 
where nonlinear pricing does not satisfy the separation property in (1)-(2). 
There is a need for more research to evaluate when and where price discrimina-
tion is efficient.  

Finally, even when it is efficient, nonlinear pricing can raise equity issues. In-
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deed, under price discrimination, having some market participants face different 
prices may be seen as “unfair”. This unfairness has sometimes been used by po-
licymakers to argue against price discrimination schemes (e.g., making it illegal 
to discriminate on the basis of race). This argument indicates a need to go 
beyond economic efficiency in the evaluation of nonlinear pricing. The issue of 
“who is paying what” becomes important when nonlinear pricing schemes are 
precisely targeted toward particular individuals or groups. Consumers who pay a 
higher price for a product are made worse off (as the higher price reduces their 
purchasing power). But the firms selling the product benefit from increase rev-
enue and profit. If the increased firm profit is redistributed to the adversely af-
fected consumers, the effects of price discrimination on the welfare of these 
consumers can be attenuated. But if it is not, price discrimination schemes can 
contribute to increasing income inequality. One scenario is when some consum-
ers are made worse off (as they pay a high price for some goods) while the asso-
ciated increase in firm profit is captured by other consumers (e.g., the owners of 
the firms). In this case, even if it is efficient, price discrimination would increase 
income inequality. In such situations, the distribution effects of nonlinear pric-
ing can be debated and subject to economic and political bargaining. This argu-
ment indicates that the evaluation of nonlinear pricing must go beyond just effi-
ciency considerations. In general, the welfare and distribution effects of price 
discrimination depend on both the nature of the pricing scheme and the distri-
bution of firm ownership. Addressing these issues seems to be a good topic for 
further research.  
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