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Abstract 
The effects of the main parameters of argon flux, oxygen flux and beam vol-
tage on the surface morphology, transmittance spectrum and laser damage of 
the HfO2 single layers prepared by ion beam sputtering are studied. The HfO2 
amorphous single layers have porous surface morphologies. Different 
processes will cause differences in coatings absorption and surface morphol-
ogy, which in turn will cause changes in the spectral transmittance curve. The 
ion beam sputtering HfO2 single layers have high content of argon (4.5% - 
8%). The laser damage of HfO2 single layers is related to argon inclusions and 
non-stoichiometric defects. The changes of argon flux and beam voltage have 
a greater impact on argon content and O/Hf ratio. When the argon content in 
the coatings is lower and the O/Hf ratio is higher, the laser damage thresholds 
of the HfO2 single layers are higher. 
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1. Introduction 

HfO2 coatings have excellent photoelectric properties and high dielectric con-
stant [1]-[6]. It is an ideal material to replace semiconductor gate material SiO2 
[7]. At the same time, because of low absorption coefficient and high transmit-
tance from ultraviolet to infrared, HfO2 layers are commonly used optical coat-
ings [8] [9]. High refractive index, wide bandgap and high laser damage thre-
shold, HfO2 layers are usually combined with SiO2 layers to prepare laser an-
ti-reflection mirrors and high-reflection mirrors [10] [11]. The laser damage 
problem of HfO2 coatings has always been a research hotspot [12] [13] [14] [15] 
[16]. 

How to cite this paper: Guo, K.S., Hu, L., 
Wei, H., Hu, Q., He, H.B. and Xu, P. (2021) 
Study on Preparation and Ns-Laser Dam-
age of HfO2 Single Layers. Optics and Pho-
tonics Journal, 11, 341-350.  
https://doi.org/10.4236/opj.2021.118024  
 
Received: March 17, 2021 
Accepted: July 31, 2021 
Published: August 3, 2021 

https://www.scirp.org/journal/opj
https://doi.org/10.4236/opj.2021.118024
https://www.scirp.org/
https://doi.org/10.4236/opj.2021.118024


K. S. Guo et al. 
 

 

DOI: 10.4236/opj.2021.118024 342 Optics and Photonics Journal 
 

Commonly used methods for preparing HfO2 laser thin films are: electron 
beam evaporation, magnetron sputtering and ion beam sputtering [17] [18] [19]. 
Generally, nodule defects are produced in coatings evaporated by electron beams 
[20] [21]. Current research shows that nodule defects are the main reason for the 
laser damage of electron beam evaporated coatings [22] [23]. Ion beam sputter-
ing and magnetron sputtering methods are relatively denser than electron beam 
evaporation, and have fewer nodule defects, and the cause of laser damage is 
usually attributed to the nano-level absorbent precursor [18] [24] [25] [26] [27]. 
Research in the past two years has shown that more argon components will ac-
cumulate in coatings deposited by ion beams, and argon may have an impact on 
the laser damage threshold of the coatings [18] [28]. But there is no detailed 
study on the process parameters, argon content and damage threshold. Howev-
er, the relationship between process parameters, argon content and laser damage 
threshold has not been studied in detail. 

This paper is the first to study the influence of the argon content change of the 
ion beam sputtering HfO2 coatings and the laser damage threshold under dif-
ferent process parameters. Studies have shown that changes in argon gas flux 
have the greatest impact on the damage threshold. Oxygen gas flux and beam 
voltage (screen grid voltage) have less impact on the damage threshold of the 
film. The relative change in argon content has a greater impact than the change 
in absolute content. The damage threshold is related to the O/Hf ratio. At the 
same time, the changes of spectrum and surface morphology under different 
process parameters are studied. This study provides a reference for the prepara-
tion of high-threshold sputtering coatings. 

2. Experiments 
2.1. Sample Preparation 

The HfO2 single layer is prepared by ion beam sputtering deposition (IBS) me-
thod. The coating equipment is VEECO dual ion beam equipment, including a 
16 cm radio frequency (RF) ion source for sputtering the target to deposit on the 
substrate, and a 12 cm ion source for auxiliary deposition to make the coatings 
denser and more closely integrated with the substrate. The substrate is fused si-
lica substrate (ultraviolet grade) with a diameter of 50 mm and a thickness of 5 
mm. The vacuum degree is 2 × 10−6 Torr. The target material is Hf metal, and 
the purity is higher than 99.9%. Argon is used as the working gas of the ion 
source, and oxygen is the reaction gas. The thickness of the six groups of differ-
ent HfO2 single layers is 800 nm, the deposition speed is 0.04 nm/s, the ion beam 
current is 600 mA, and the substrate temperature is 80 centigrade. The changed 
process parameters are argon flux, oxygen flux, beam voltage (screen grid vol-
tage), as shown in Table 1. 

2.2. Laser Damage Experiments 

Perform 1-on-1 laser damage test according to ISO-21254 standard [29]. A Nd:YAG 
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Table 1. Six different HfO2 single layers process parameters. 

Parameters 8 Ar 28 Ar 15 O2 40 O2 950 V 1250 V 

Ar flux (sccm) 8 28 18 18 18 18 

O2 flux (sccm) 15 15 15 40 15 15 

Beam voltage (V) 1250 1250 1250 1250 950 1250 

 

laser with a wavelength of 1064 nm and a pulse width of 12 ns is used. The inci-
dent angle is 0˚. The area of the laser energy 1/e2 range on the sample is 0.068 
mm2. The laser energy fluctuation range in the test is less than 5%. The laser 
energy is continuously adjustable by the combination of half-wave plate and po-
larizer. There are 20 sampling points for each energy step. The real-time display 
of 5 times optical zoom CCD detects the laser irradiation area. 

3. Results and Discussion 

The phases of six groups of HfO2 single layers are measured by X-ray Diffraction 
(XRD, Panalytical Empyrean). The X-ray source is Cu-Kα (λ = 0.15418 nm), and 
the 2θ range is 10˚ to 90˚. The result is the broad scattering bugle. Therefore, the 
HfO2 coatings are all amorphous phases. The XRD diffraction spectrum of typi-
cal HfO2 single layers is shown in Figure 1.  

A spectrophotometer (Lambda 1050, Perkin Elmer) is used to test the trans-
mittance spectra of different groups of HfO2 single layers. The spectra of the two 
samples with varying argon flux (8 sccm and 28 sccm) are shown in Figure 2. It 
can be seen that the overall transmittance of 28 sccm sample is slightly higher 
than 8 sccm sample. The surface morphologies of different single layers are 
tested by atomic force microscope (AFM, Dimension 3100, Veeco). The surface 
morphologies of the two samples with varying argon gas flux are shown in Fig-
ure 3. It can be seen that both samples show dense void-like structures, and 28 
sccm sample has more voids than 8 sccm sample. Therefore, the reason why the 
transmittance of 28 sccm sample is higher than 8 sccm sample may be that the 
cavity structure of 28 sccm sample has better anti-reflection effect than that of 8 
sccm sample.  

The transmittance spectra and morphologies of different oxygen flux (15 sccm 
and 40 sccm) are shown in Figure 4 and Figure 5, respectively. It can be seen 
that the peak transmittance of the 15 sccm sample is higher than 40 sccm, and 
the shortwave absorption of the 15 sccm sample is lower than the 40 sccm sam-
ple. It can be seen from the surface morphology that both samples show a por-
ous structure, with more pores of 40 sccm sample. The reason for the difference 
in the transmittance of the two film samples may be related to the difference in 
surface structure and the absorption coefficient of the film.  

The beam voltage (screen grid voltage) determines the energy of the discharge 
ions. Changing the beam voltage will change the deposition density, stress and 
other parameters of the coatings. The transmittance spectra and surface mor-
phology of different beam voltages (950 V and 1250 V) are shown in Figure 6  
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Figure 1. Typical XRD diffraction spectrum of HfO2 single layers. 

 

 

Figure 2. Transmittance spectra of HfO2 single layers under different argon gas flux: 8 
sccm (black line) and 28 sccm (red line). 
 

 

Figure 3. Surface morphologies of HfO2 single layers under different argon gas flux: 8 (sccm) Ar (a) and 28 (sccm) Ar (b). 
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Figure 4. Transmittance spectra of HfO2 single layers under different oxygen gas flux: 15 
sccm (black line) and 40 sccm (red line). 
 

 

Figure 5. Surface morphologies of HfO2 single layers under different oxygen gas flux: 15 sccm (a) and 40 sccm (b). 
 

 

Figure 6. Transmittance spectra of HfO2 single layers under different beam voltages 
(screen grid voltages): 950 V (black line) and 1250 V (red line). 
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and Figure 7, respectively. It can be seen that in the medium and long wave re-
gion, the peak transmittance is similar, but in the short-wave region, the 1250 V 
sample has a higher transmittance than the 950 V sample. So, 950 V single-layer 
sample has higher absorption. Both samples show porous surface morphologies. 
The size and number of pores in the 1250 V sample are higher than the 950 V 
sample, which is due to the high-energy sputtering deposition process with high 
beam voltage. 

X-ray photoelectron spectroscopy (XPS; Thermo Scientific) is used to charac-
terize the composition of different HfO2 single layers. The diameter of the test 
sampling range is 400 μm. The test depth is about 1 nm. The content of argon 
(Ar (%)) in the layers and the ratio of the content of oxygen to hafnium (O/Hf 
ratio) are shown in Table 2. The argon content in the sample is higher than 4%, 
and the argon content is much higher than the solubility of argon in solid mate-
rials, which is about 1% [30]. It can be seen that the sample with 28 sccm argon 
flux contains more argon than the sample with 8 sccm, and the sample with 28 
sccm argon flux has an O/Hf ratio lower than 8 sccm. This is due to the differ-
ence in argon flux. The argon content in samples with more argon flux is higher, 
and the hafnium metal is not fully oxidized, resulting in lower O/Hf ratio. The 
argon content in the sample with 40 sccm oxygen flux is slightly lower than the 
sample with 15 sccm oxygen flux, and the O/Hf ratio is slightly higher than the 
sample with 15 sccm oxygen flux. This is because the hafnium metal in the sam-
ple with high oxygen flux is fully oxidized, resulting in a high O/Hf ratio, and at 
the same time, an increase in the proportion of oxygen leads to a lower argon 
content. In the sample with a beam voltage of 1250 V, the argon content is high-
er than the sample with 950 V, and the O/Hf is lower than the sample with 950  
 

 

Figure 7. Surface morphologies of HfO2 single layers under different beam voltages: 950 V (a) and 1250 V (b). 
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Figure 8. Laser damage thresholds of different HfO2 single layers (1064 nm, 12 ns, 
1-on-1). 
 
Table 2. Surface roughness, argon content and O/Hf ratio of different HfO2 single layers. 

Parameters 8 Ar 28 Ar 15 O2 40 O2 950 V 1250 V 

Ar (%) 4.50 5.46 7.79 7.22 7.29 7.86 

O/Hf ratio 1.91 1.74 1.82 1.88 1.86 1.77 

 
V. During the sputtering deposition of the coatings, ions will be deposited on the 
surface of the substrate with high energy, which will cause the working gas argon 
to be wrapped in the coatings. Therefore, a higher beam voltage will cause an 
increase in the argon component of the coatings, and at the same time, the de-
position of inclusions will become more and more dense, resulting in insuffi-
cient reaction, and therefore the non-stoichiometric defects will increase.  

The laser-induced damage thresholds (LIDT) of different samples are shown 
in Figure 8 (1064 nm, 12 ns, 1-on-1). It can be seen that the HfO2 single layers 
with 28 sccm argon flux has the lowest damage threshold, followed by the sam-
ple with a beam voltage of 1250 V. The thresholds of other samples are not much 
different, and the sample with 8 sccm argon flux has the highest damage thre-
shold. It can be seen that the laser damage threshold is related to the argon in-
clusions and non-stoichiometric defects. Under different process parameters, 
higher O/Hf ratio and lower argon content, HfO2 single layers have higher 
LIDTs. Among them, the argon flux and beam voltage are important process 
parameters that affect the O/Hf ratio and the argon content in the coating. 

4. Conclusion 

The main process parameters (argon flux, oxygen flux and beam voltage) of the 
ion beam sputtering preparation of HfO2 single layers, the transmittance spec-
trum, surface morphology and laser damage characteristics are studied. The 
prepared HfO2 single layers are all amorphous structures. The surface of the 
HfO2 single layers all showed a porous morphology. Due to the absorption of the 
coatings with different process parameters and the difference in surface mor-
phology, the transmittance spectrum of the HfO2 single layers is different. In 
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sputtering deposition, the high ion energy will wrap the argon into the coatings, 
resulting in a higher content of argon in the coatings than coatings prepared by 
other methods. The laser damage thresholds of the HfO2 single layers are related 
to the argon inclusions and non-stoichiometric defects. The changes in argon 
flux and beam voltage parameters have the greatest impact on the O/Hf ratio 
and argon content. When the O/Hf ratio is high and the argon content is low, 
the laser damage threshold of the HfO2 single layers is high. A more detailed 
study will be conducted on specific process parameters later. This thesis is of 
great significance for the preparation of sputtered coatings with high laser dam-
age threshold. 
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