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Abstract 

Consider a distribution with several parameters whose exact values are un-
known and need to be estimated using the maximum-likelihood technique. 
Under a regular case of estimation, it is fairly routine to construct a confi-
dence region for all such parameters, based on the natural logarithm of the 
corresponding likelihood function. In this article, we investigate the case of 
doing this for only some of these parameters, assuming that the remaining (so 
called nuisance) parameters are of no interest to us. This is to be done at a 
chosen level of confidence, maintaining the usual accuracy of this procedure 
(resulting in about 1% error for samples of size 30n = , and further decreas-
ing with 1/n). We provide a general solution to this problem, demonstrating 
it by many explicit examples.  
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1. Introduction 

There is a basic technique (expounded in detail by M. S. Bartlett—see [1] [2] and 
[3]—nicely summarized in [4]) for constructing confidence regions (intervals) 
for parameters of a specific distribution (assuming a regular case, meaning the 
distribution’s support is not a function of any of the distribution’s parameters) 
which rests on the fact that 

( ) ( )0
ˆ2 ln ; 2 ln ;− X Xθ θ                    (1) 

has approximately the chi-square distribution with K degrees of freedom (K is 
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the number of parameters to be estimated), where 

( ) ( )
1

ln ; : ln ;
n

i
i

f
=

= ∑ X xθ θ                    (2) 

X  is the set of n observations, individually denoted ix  (allowing for a possi-
bility of a multivariate distribution), ( );f x θ  denotes the corresponding proba-
bility density function, θ̂  is the vector of the resulting maximum-likelihood (ML) 
estimators of the parameters, and 0θ  represents their true (even though un-
known) values. 

The proof rests on expanding the LHS of following K-component equation  

( )
1

ln ;n
i

i

f

=

∂
=

∂∑
x

0
θ

θ
                     (3) 

with respect to θ  at 0θ  to a linear (in 0−θ θ ) accuracy, making the answer 
equal to 0  and solving for θ , thereby getting 

1
0

ˆ −−  Yθ θ                         (4) 

where 

( )

0
1

ln ;1:
n

i

i

f
n = =

∂
=

∂∑
x

Y
θ θ

θ
θ

                   (5) 

and  

( ) ( ) ( )

00

2

2

ln ; ln ; ln ;
:

f f f

==

   ∂ ∂ ∂   = − ≡
   ∂ ∂∂   

�  
X X X

θ θθ θ

θ θ θ
θ θθ

   (6) 

Note that Y  is a K-component vector, while   represents a symmetric, 
positive-definite K by K matrix (the small circle stands for a direct product of 
two vectors). 

Similarly expanding (1) and utilizing (4) we get 

( ) ( ) ( )T T 1
0 0 0

ˆ ˆ ˆ2n n n n−− − − − + =� Y Y Yθ θ θ θ θ θ        (7) 

where nY  has (by Central Limit Theorem), approximately, a K-variate Nor-
mal distribution with the mean of 0  and the variance-covariance matrix of 
 ; this implies that (7) has, to the same level of approximation, the 2

Kχ  dis-
tribution (since the components of 1 2 n− Y  are then asymptotically inde-
pendent, each having the mean of 0 and the variance of 1). 

From all this, it then follows that an approximate confidence region is found 
by first finding the maximum likelihood estimators θ̂ , then making (1) equal to 
a critical 2

Kχ  value and solving (usually, only graphically) for 0θ . 
We demonstrate this by generating a random independent sample of 200 ob-

servations from a Negative Binomial distribution (with parameters α  and p) 
and constructing the corresponding 90% confidence region for the two parame-
ters; a simple, self-explanatory Mathematica code to do exactly that looks like 
this: 
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The resulting confidence region is displaced in Figure 1. 
Similarly, to test a null hypothesis which claims specific values for the K pa-

rameters, we evaluate (1) with 0θ  being the hypothesized (rather than the true) 
values, and check the result against the critical value of 2

Kχ ; something this ar-
ticle will not elaborate on any further. 

2. Partial Confidence Regions 

The aim of this article is to show how to construct a confidence region (called 
partial) for only some parameters of distribution, even though all of its parame-
ters are unknown and need to be estimated by the maximum-likelihood tech-
nique. 

We should mention that there is some existing literature on using partial like-
lihood functions (LF), for example [5], but its goals and results bear little resem-
blance to ours. Similarly, articles on marginal LF (for example [6]) and condi-
tional LF deal with only rather specialized issues while our approach is fully 
general; the only shared feature is the occasional use of identical terminology. 
 

 

Figure 1. 90% confidence region for α and p. 
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Extending the technique delineated in our Introduction, we now need to find 
an approximate distribution of 

( ) ( )0
ˆ ˆ2 ln ; 2 ln ;− X Xθ Θ                    (8) 

where only some components of 0Θ̂  are equal to the true values of the corres-
ponding (we call them pivotal) parameters, while the rest (the nuisance parame-
ters; a term introduced by [7] and further explored by [8]) are set to their θ̂  
values. Knowing this distribution will then enable us to construct confidence re-
gions (or test hypotheses) for the pivotal parameters only while ignoring the es-
timates of the nuisance parameters. 

Since we already have a good approximation to (1), namely (7), or equivalent-
ly 

( ) ( )T

0 0
ˆ ˆn n− −θ θ θ θ                    (9) 

we now need a similar approximation for  

( ) ( )0 0
ˆ2 ln ; 2 ln ;L L−X X θΘ                  (10) 

and then, for the corresponding difference. To approximate (10), we go back to 
the LHS of (7) and replace 0

ˆ −θ θ  by 0 0
ˆ −θΘ  (i.e. keeping the nuisance com-

ponents of 0
ˆ −θ θ  and setting the pivotal components to 0) while ( )0

ˆ= −Y θ θ , 
computed from (4), remains unchanged. This results in  

( ) ( ) ( ) ( )
( ) ( )

T T

0 0 0 0 0 0 0

T

0 0 0

ˆ ˆ ˆ ˆ2

ˆ ˆ:

n n

n

− − − − −

= − −

 



θ θ θ θ θ

θ θ θ θ

Θ Θ Θ
       (11) 

where 0  is the original   matrix with all pivotal-by-pivotal elements set 
to 0 (a notation to be used with other matrices as well). 

This can be shown by rearranging the parameters to start with the pivotal and 
be followed by the nuisance ones, and visualizing the corresponding 2 by 2 block 
structure of the symmetric matrix  . In such representation, the previous eq-
uation reads 

( ) ( ) ( ) ( )T T

0 0 0 0
ˆ ˆ ˆ ˆn n   
− − + − −   

   

  


  

θ θ θ θ θ θ θ θ  

( ) ( ) ( ) ( )T T

0 0 0 0
ˆ ˆ ˆ ˆn n   

− − − = − −   
   

  



  

θ θ θ θ θ θ θ θ  

where a full square   indicates keeping the original block of the   matrix, 
while each   represents a zero sub-matrix of the corresponding dimensions. 

Subtracting (11) from (9) then yields the desired approximation to (8), namely 

( ) ( )( )T

0 0 0
ˆ ˆn n− − − θ θ θ θ               (12) 

Introducing ( )0
ˆ n= −U θ θ , which we know from our Introduction to be ap-

proximately K-variate Normal, having zero means and the variance-covariance 
matrix of 1− , we can now find the moment generating function (MGF) of (12) 
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by 

( )

( ) ( )

( ) ( )( )

T
T

0

2 1

1 1
0

0

exp d
2

2 det

1 1
det 2 2 det 2 2

K

t

t t t t

∞

−∞

−

− −

 
− + − 
 

= =
− + +

π

−

∫ ∫�
  



       

u u u u u

     (13) 

where   is the K by K identity matrix. The last equality follows from the fact 
that 

( ) ( )1 1
, ,1 , ,

0

− −
−

   −
   = =
      

� �    
 

   
p i p pi p p p       (14) 

and 

( ) ( )1
,1 ,

0

−
−

 
 =
  �

  
 


p i i p                 (15) 

make the same contribution to the determinant in (13), where   is now the L 
by L identity matrix (L being the number of pivotal parameters). In (14), we also 
use the fact that 

( ) ( )1 1
, ,, ,

− −+ =    p i p pi p p p
                (16) 

where the p  and i  subscripts refer to the corresponding pivotal and/or nuis-
ance block of the matrix. 

It is easy to see that the result of (13) does not change after replacing   (the 
variance-covariance matrix of nY ) by the corresponding correlation matrix 

1 2 1 2− −=   , where   is the main-diagonal matrix of the corresponding 
variances, and correspondingly replacing 0  by  

( )0 00

1 2 1 2 1 2 1 2− − − −= =       (recall that the 0 subscript indicates setting 
all pivotal-pivotal elements equal to 0), since clearly 

( ) ( )1 1
0 0det 2 2 det 2 2t t t t− −− + = − +                  (17) 

Similarly, we can replace the asymptotic variance-covariance matrix of  

( )0
ˆn −θ θ , namely 1− , by its correlation matrix 1 2 1 1 2−− −=� � �     and 

0  by ( ) 1 2 11
00

2− =� � �     without affecting the value of the determinant. 

Summary 

Based on (14), the MGF of (12) is given by 

1

1
1 2

L

t e= − ⋅
∏
� �

                       (18) 

where 1 2, , , Le e e�  are the eigenvalues of ( )1
, ,

− p p p p
 (note that   can be 

replaced by   or � , whichever is more convenient). The resulting PDF is  

then that of a convolution of the individual Gamma ( 1 ,2
2

e� ) distributions. 
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It is important to note that, when there are more pivotal than nuisance para-
meters (i.e. when L K L> − ), the L by L matrix ( )1

, ,

− p i i p
 in (16) is of rank 

K L−  only (this is now determined by the number of columns of ,p i ), im-
plying that ( ) 2L K L L K− − = −  of its eigenvalues are equal to 0, and corres-
pondingly simplifying the eigenvalues of ( )1

, ,

− p p p p
 ( 2L K−  of which will 

be equal to 1). Furthermore, the remaining eigenvalues of ( )1
, ,

− p i i p
 are the 

same as those of ( )1
, ,

− i p p i
; this is based on a general result stating that, 

when   is an n by m matrix while   is m by n,   and   will share all 
their non-zero eigenvalues, while the extra eigenvalues, if any, will be equal to 0. 

This implies that, when L K L> − , we can replace the eigenvalues of  

( )1
, ,

− p p p p
 by the eigenvalues of ( )1

, ,

− i i i i
 (a smaller matrix), knowing 

that each of the remaining 2L K−  eigenvalues is equal to 1. 
The final note: some steps of the resulting procedure for constructing partial 

confidence regions may be carried out analytically, while the rest require a nu-
merical approach. This can be observed in our subsequent examples: some avoid 
explicit formulas entirely, performing each step numerically (always an available 
option), while our last example is almost completely analytical, to facilitate in-
vestigation of the technique’s accuracy. 

3. Multivariate Normal Distribution 

The most important multi-parameter distribution is the Normal distribution 
of several (say n) random variables 1 2, , , nX X X� , collectively denoted X . It 
is fully specified by the following parameters: n individual means (collectively  

denoted µ ), n standard deviations σ , and 
2
n 
 
 

 correlation coefficients ijρ  

(1 i j n≤ < ≤ ) usually collected in a symmetric matrix   (each ijρ  will 

appear twice, on both sides of the main diagonal, whose elements are all equal to 
1). This section is a review of basic formulas relating to ML estimation of these 
parameters. 

The natural logarithm of the corresponding PDF (aka likelihood function) is 
given by 

( ) ( ) ( )
T 1 1 1 1 ln det ln det ln 2

2 2 2
n− − −− −

− − − − π
  

 
x xµ µ

      (19) 

where   is a main-diagonal matrix of the n values of σ . Note that ( )1− − x µ , 

explicitly expanded, yields the following vector 1 1 2 2

1 2

, , , n n

n

xx x µµ µ
σ σ σ

−− −
� . 

To find the corresponding   matrix, we use the following well-known 
formulas 

1
1 1d d=

d dkl klρ ρ

−
− −−

                         (20) 

1d ln det dTr
d dkl klρ ρ

− 
=  

 

                       (21) 
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where Tr indicates taking the matrix’ trace. Note that all but two elements of  

[ ] [ ] [ ] [ ] [ ]d :
d

kl k l l k

klρ
= = +� �

  v v v v                  (22) 

are equal to 0 (the remaining two elements are equal to 1), where [ ]kv  stands 
for a vector of 1n −  zeros with only its kth component equal to 1. 

Differentiating (19) twice with respect to µ  and changing the sign yields 
1 1 1− − −                             (23) 

which represents the µ  by µ  block of  , while the µ  by σ  and µ  by 

ijρ  blocks are both zero sub-matrices, since ( )− = x 0µ —that goes for the 
σ  by µ  and ijρ  by µ  blocks as well. 

To find the σ  by σ  block, we first differentiate (19) with respect to iσ  
and then with respect to jσ  (assuming i j≠ ), getting 

( ) ( ) ( ) ( ) ( ) ( )1 1

2 22
i j j iij ij

i j

x x x xµ µ µ µ

σ σ

− −− − + − −
−

 
         (24) 

Reversing the sign and taking the expected value yields the following expres-
sion for the off-diagonal elements of the σ  by σ  block  

( )1
ij ij

i jσ σ

− 
                          (25) 

since ( )( )( )i i j j i j ijx xµ µ σ σ− − =  . 
When differentiating with respect of iσ  twice, the corresponding second de-

rivative is 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

3
1

1

4 2

1

n i j j iij ij

j i j

i iii

i i

x x x x

x x

µ µ µ µ

σ σ

µ µ

σ σ

− −

=

−

− − + − −
−

− −
− +

∑
 


       (26) 

Reversing the sign and taking the expected value then yields 

( ) ( ) ( )1 1 1

2 2 2 2 2
1

1 12
n ji ii iiij ii ii

j i i i i iσ σ σ σ σ

− − −

=

+ − = +∑
     

         (27) 

for the main-diagonal elements of the σ  by σ  block (note that  

( )1
1 1n

ji iij ij

−
=

= =∑    ). 
This means that 

( )1
ij ijij

i jσ σ

− +  
                       (28) 

is the resulting expression for both the diagonal and off-diagonal elements of the 
σ  by σ  block. 

To find the klρ - mpρ  element of the   matrix, we first need the corres-
ponding second derivative of (19), namely 
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( ) [ ] [ ] ( ) [ ] [ ]( )
T 1 1 1 1 1

1 12 1 Tr
2 2

kl mp
kl mp

− − − − −
− −− −

− +
      

   
x xµ µ

 (29) 

Reversing the sign and taking the expected value results in 

[ ] [ ]( ) ( ) ( ) ( ) ( )1 1 1 1 1 11 Tr
2

kl mp

km lp kp lm

− − − − − −= +              (30) 

Finally, to get the iσ - klρ  element of  , the corresponding differentiation 
of (19) yields 

( ) [ ] ( ) ( ) [ ] ( )T1 1 1 1 1 1 1 1

2

kl kl
i i

i

x xµ µ
σ

− − − − − − − −− − + − −
−

         x xµ µ
 (31) 

which, after changing the sign and taking the expected value, results in 
[ ]( ) [ ]( ) ( ) ( )1 1 1 1 1

1

kl kl
n ij il ikji ii ik il

j i i iσ σ σ

− − − − −

=

+
= =∑

         
      (32) 

having a non-zero value only when i k=  or i l= . 

4. Case of Asymptotic Independence 

This section discusses the situation in which all elements of the pivotal-nuisance 
and (consequently) nuisance-pivotal blocks of   (and, correspondingly, of 

0  and 1− ) are equal to 0. In that case, 1
0

−   has the following simple 
form: its nuisance-nuisance block is the identity matrix, the remaining three 
blocks are all zero sub-matrices (implying that 1

0
−−    of (13) has an iden-

tity matrix in the pivotal-pivotal block, and zero sub-matrices elsewhere). The 
resulting MGF of (8) thus equals to ( )1 2 Lt −− , where L is the number of pivotal 
parameters, which means that the asymptotic distribution of (8) is 2

Lχ , making 
a construction of the corresponding partial confidence region fairly routine. 

Let us add that such asymptotic independence is not uncommon; for example, 
when a symmetric (with respect to its mean) distribution has a location and scale 
parameters only, the corresponding ML estimators are then always asymptoti-
cally independent. 

To see why, note that, in this case, the PDF of the sampled distribution can be 
expressed as 

( ) 0
1 xf x f µ
σ σ

− = ⋅  
 

                   (33) 

where µ  and σ  are the location and scale parameters respectively, and ( )0f y  
is a parameter-free PDF, symmetric with respect to 0. The off-diagonal element 
of   is then proportional to 

( ) ( ) ( )
( )

0 0
0

0

d
y f y f y

f y y
f y

∞

−∞

′⋅ +
′ ⋅∫                (34) 

due to (6); the integrand is clearly an anti-symmetric (odd) function of y, result-
ing in a zero integral. This enables us to find a partial confidence interval for ei-
ther µ  of for σ  (while ignoring the other parameter) by using the 2

1χ  dis-
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tribution for (8). 
Similarly, in the case of a bivariate Normal distribution, the ML estimators of 

the two means on one hand, and of the two standard deviations and the correla-
tion coefficient on the other, form two such mutually independent sets as well; 
this is clear from what we learned in the previous section but, due to the impor-
tance of this example, let us be more explicit and quote the well-known asymp-
totic correlation matrix of ( )0

ˆn −θ θ , namely 

2

2

1 0 0 0
1 0 0 0

0 0 1
2

0 0 1
2

0 0 1
2 2

ρ
ρ

ρρ

ρρ

ρ ρ

 
 
 
 

− 
 =
 

− 
 
 

− − 
 

�              (35) 

where the five parameters (collectively denoted θ ) are the usual 1 2 1 2, , ,µ µ σ σ  
and ρ  (in that order); the respective asymptotic variances are  

( ) ( )2 2 2 2
1 2 1 2, , 2 , 2n n n nσ σ σ σ  and ( )221 nρ− . 
Constructing a confidence region for either set of parameters is then quite 

simple (knowing that �  has the above block-diagonal structure is all we need, 
the individual elements are irrelevant) as the following Mathematica program 
demonstrates. 
 

 
 

The program produces the output presented in Figure 2 and Figure 3; the 
first graph is the resulting partial 95% confidence region for 1µ  and 2µ , the 
second one is the 90% confidence region for 1 2,σ σ  and ρ . This assumes that 
one is interested only in one or the other (not both)—if a confidence region for 
all five parameters is desired, one would use the basic procedure of our Intro-
duction.  

5. General Case 

In general (and with no asymptotic independence to help) things get more com-
plicated. We now go over all possible cases involving up to five parameters. 
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Figure 2. Confidence region for μ1 and μ2. 
 

 

Figure 3. Confidence region for σ1, σ2 and ρ. 

5.1. Two Parameters 

In this situation, the only possibility is constructing a confidence interval for one 
of the two parameters, while ignoring the other. Since the   (or � ) matrix 
will always have the following form  

1
1
ρ

ρ
 

=  
 

                         (36) 

we get 

( )1
1,1 21,1

1
1 ρ

− =
−

                       (37) 
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which implies that the distribution of (8) is that of a 2
1χ  random variable, fur-

ther divided by 21 ρ− . This means that, to construct a 1 α−  confidence inter-
val (CI) for the pivotal parameter, we make (8) equal to the corresponding criti-
cal value of 2

1χ , also divided by 21 ρ− , substitute the ME estimate of the nuis-
ance parameter, and solve for the pivotal one to get the two CI boundaries. 

The following Mathematica program demonstrates the construction of a 
90% confidence interval for the α  parameter of the Gamma ( ,α β ) distribu-
tion. 
 

 
 

Note that in this case 11ρ αψ= , based on  

1

2

1

1

ψ
β
α

β β

 
 
 =
 
 
 

                        (38) 

where 1ψ  is the second derivative of ( )ln αΓ , called “PolyGamma[1, α]” by 
Mathematica; to evaluate it, we had to use the ML estimate of α , instead of its 
true value. That is how we deal with this problem in general; this does not 
change the asymptotic distribution of (8). 

5.2. Three Parameters 

A three-parameter situation requires discussing two possibilities: 
When constructing a CI for a single parameter (say 1θ ), (8) has again the 

( ) ( )2 1 2 1
1 11,1 1,1
χ χ− −⋅ ≡ ⋅ �   distribution; this follows from ( )1

1,1 1,1

−   having 
only one element (its only eigenvalue), and from 1,1 1≡ . Note that this result 
(when interested in only one parameter) is true for any K.  

When finding a confidence region for 2θ  and 3θ , the distribution of (8) is a 
convolution (i.e. an independent sum) of 2

1χ  and another 2
1χ , the latter mul-

tiplied ( )1

1,1
:s −=  ; this is based on the arguments following (18). The corres-

ponding PDF is 

0
1 1 1exp

4 42
s sy I y

s ss
+ −   − ⋅ ⋅   

   
               (39) 

where 0I  denotes the modified Bessel function of the first kind; note that using 
this PDF to find a critical value can be done only numerically (there is no ana-
lytic expression for the corresponding CDF, let alone for its inverse). 

As an example, we assume sampling a distribution with the following PDF 
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( )

1 exp

; , , when 0

xx

f x x

γ
αγ

β
α β γ

α
γ

−
   −    = >

 
Γ 
 

         (40) 

(each of the three parameters must be positive) and constructing a 95% confi-
dence region for β  and γ  only. Leaving out routine details, the expression 
for s turns out to be 

( )
( )

2
1

2 2 2
1 1

1s
α ψ α γ γα

γ γ ψ γ α ψ

− +
= + +

+ −
                 (41) 

where 1ψ  is the second derivative of lnΓ , evaluated at 
α
γ

. 

The following Mathematica code demonstrates the algorithm. 
 

 
 

The confidence region for the β  and γ  thus produced is displayed in Fig-
ure 4. 
 

 

Figure 4. Confidence region for β and γ. 
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5.3. Four Parameters 

A CI for 1θ  results in (8) having the ( )2 1
1 1,1
χ −⋅   distribution, as discussed 

previously. 
The complementary task of constructing a confidence region for 2 3,θ θ  and 

4θ  then leads to a convolution of the previous distribution and that of 2
2χ  (to 

account for the two extra eigenvalues of ( )1
,1 1,

−−  p p
, both equal to 1); this 

convolution has a PDF given by 

( )11 exp erf
2 22 1

s yy
ss

 − ⋅   −   −    
               (42) 

Finally, to build a confidence region for 1θ  and 2θ  requires using the fol-
lowing PDF for (8): 

1 2 1 2 1 2
0exp

2 4 4
t t t t t ty I y+ −   − ⋅ ⋅   

   
               (43) 

where 1t  and 2t  are the two eigenvalues of ( )1
, ,

− p p p p
; using   instead 

of   is still possible, but has no longer any advantage, since critical values of 
(42) and (43) can again be found only numerically. 

To show how to use the last formula, we assume sampling a mixture of Expo-
nential and Normal distributions (the four parameters are: the mean of the Expo-
nential distribution, denoted b, and its weight in the mixture a, followed by the 
mean c and standard deviation d of the Normal distribution). Note that in this 
example we also bypass an analytic solution for elements of the   matrix—these 
can be easily computed by substituting values of the ML estimates for 0θ  in (6), 
and only then computing, by numerical integration, the corresponding expected 
value. The following Mathematica program demonstrates the complete algorithm. 
 

 
 

Producing the 90% confidence region displayed in Figure 5 for the mean (ho-
rizontal scale) and standard deviation (vertical scale) of the Normal-distribution 
part of the mixture. 

5.4. Five Parameters 

As in all previous cases, a confidence interval for only one (say 1θ ) of the para-
meters requires using the 2

1χ  distribution, further multiplied by ( )1

1,1
:s −=  . 
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Figure 5. Confidence region for c and d. 
 

For the complementary task of building a (four-dimensional) confidence re-
gion for 2 3 4, ,θ θ θ  and 5θ , the distribution of (8) becomes a convolution of 

2
1 sχ ⋅  and 2

3χ ; the corresponding PDF is 

0 1
1 1 1exp

4 4 44
y s s sy I y I y

s s ss
+  − −      − ⋅ ⋅ + ⋅            

           (44) 

A confidence region for 1θ  and 2θ  is found using the PDF of (43), found in 
the case of four parameters. 

The PDF used for the three-dimensional confidence region of the true values 
of 3 4,θ θ  and 5θ  is then a convolution of the last PDF and that of an indepen-
dent 2

1χ ; no explicit formula for the resulting PDF exists, but the following 
example demonstrates how to bypass this problem. 

This time, we assume sampling a tri-variate Normal distribution having iden-
tical means (denoted µ ) and identical standard deviations (denoted σ ). We 
now construct a three-dimensional confidence region for ,µ σ  and 12ρ  (while 
ignoring 13ρ  and 23ρ ), using the following Mathematica code. 
 

 
 

The resulting confidence region is shown in Figure 6. 
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Figure 6. Confidence region for μ, σ and ρ12. 

6. Technique’s Accuracy 

In this section, we go over a rather special example, allowing us to analytically 
find not only all ML estimators, but also an exact expression for (8). These are 
then used to build (still analytically) formulas for boundaries of a confidence in-
terval for one of the parameters. Furthermore, the exact distribution of the esti-
mator is also known, which gives us a unique opportunity to compute the error 
of our technique. 

Let us now proceed with the actual example of constructing a confidence inter-
val for the correlation coefficient of a bivariate Normal distribution, and compu-
ting its exact level of confidence (while ignoring the remaining four parameters). 

Firstly, it is well known what the ML estimators of the two means ( xµ  and 

yµ ), the two standard deviations ( xσ  and yσ ), and the correlation coefficient 
ρ  are; we will denote them , , ,x yX Y S S  and r respectively. The likelihood 
function, once we replace all five parameters by their estimators, then reads 

( )
( ) ( ) ( )( )

( ) ( )

2 2

2 22
1

2 2

1 2
2 1

ln 1 ln ln ln 1 ln ln
2 2

n
i i i i

i x yx y

x y x y

X X Y Y X X Y Y
r

S SS Sr

n nr n S n S n r n S n S

=

 − − − − − + −
 −  

− − − − = − − − − −

∑
    (45) 

When similarly replacing the first four parameters only (keeping the exact 
value of ρ ), the likelihood function becomes 

( )
( ) ( ) ( )( )

( ) ( )

2 2

2 22
1

2 2
2

1 2
2 1

1  ln 1 ln ln ln 1 ln ln
2 21

n
i i i i

i x yx y

x y x y

X X Y Y X X Y Y
S SS S

n r nn S n S n n S n S

ρ
ρ

ρρ ρ
ρ

=

 − − − − − + −
 −  

−
− − − − = − − − − −

−

∑
 (46) 

making (8) equal to 
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2 2

2 2

12 ln
1 1
r rn nρ ρ
ρ ρ
− −

− −
− −

                     (47) 

It is easy to find that ( )1 2

5,5
1 ρ− = +� , where �  is the matrix of (35); this 

means that the random variable (47) has, approximately, the 2
1χ  distribution 

further multiplied by 21 ρ+ . Making (47) less than the critical value of this dis-
tribution (say Cα ) has, approximately, the probability of 1 α−  of being cor-
rect. Since the sampling distribution of r is known, we can also compute the ex-
act probability of the same inequality, thus getting the error of the approxima-
tion. This is done by the following Mathematica program (for any chosen set of 
values for , nρ  and α ) 
 

 
 
where the first two lines (a continuation of a single Mathematica statement) spell 
out the exact PDF of r. The program then specifies ,nρ  and α , makes (47) 
equal to 1 α− , and solves for r (note that this is the reverse of what is done 
when finding boundaries of a confidence interval for ρ , given a value of r); the 
last line then evaluates the corresponding exact probability. Note that the PDF of 
r is notoriously slow in reaching its Normal limit (on which our approximation 
is based), making the errors of confidence intervals for ρ  atypically large; this 
example is thus close to presenting the worst-case scenario. 

By executing the program using various values of ,nρ  and 1 α− , we get 
errors (in percent) presented in Table 1 (these are quoted for 10,30n =  and 
100 respectively). 

Based on these results, we can make the following observations: 
 The exact confidence level is always less than the claimed one. 
 The error does not change much with the value of ρ  (surprisingly, the error 

is usually the largest at 0ρ =  and decreases slightly towards both extremes). 
 It decreases as the confidence level goes up, but increases relative to α . 
 It decreases, to a good approximation, with 1/n.  
 
Table 1. List of the technique’s errors (in %). 

1 α− =  0.8 0.9 0.95 0.99 

0ρ = ↓  6.6, 2.0, 0.57 5.4, 1.5, 0.43 3.9, 1.1, 0.29 1.5, 0.36, 0.10 

±0.5 6.2, 1.8, 0.53 4.8, 1.4, 0.39 3.4, 0.92, 0.26 1.2, 0.30, 0.08 

±0.9 5.3, 1.6, 0.46 4.2, 1.2, 0.36 3.2, 0.92, 0.27 1.7, 0.48, 0.14 

±0.99 5.0, 1.5, 0.44 4.0, 1.2, 0.35 3.1, 0.95, 0.28 1.9, 0.58, 0.17 
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7. Conclusion 

We have shown how to construct confidence regions for parameters of interest 
while ignoring one or more additional (nuisance) parameters. This is done based 
on ML estimates of all parameters, utilizing the corresponding likelihood func-
tion and formulas of this article. The error of the resulting procedure behaves 
similarly (i.e. decreasing with the first power of the sample size) to the error of 
ordinary confidence regions based on the 2χ  distribution of (1). Our explicit 
examples have covered situations involving up to five parameters in total, but a 
general approach for dealing with any number of parameters has been clearly 
delineated as well. Future research will undoubtedly supply specific details of 
any such multi-parameter situation, and come up with a way of simplifying, at 
least numerically, the resulting distributions. 
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Appendix: Notation and Abbreviations 

 ( ); X θ : the Likelihood Function; X  is the set of observations, θ  are the 
distribution parameters. 

 LF: likelihod function. 
 ML: maximum likelihood. 
 LHS: left hand side. 
 MGF: moment generatin function. 
 PDF: probability density function. 
 2

Kχ : the chi-square distribution with K degrees of freedom. 
  : a symbol for taking expected value. 
   and  : identity and zero matrix, respectively. 
  : the variance-covariance matrix of multivariate Normal distribution. 
 0 : the previous matrix with all pivotal by pivotal elements set to 0.  
 ,p i : the pivotal by nuisance (or incidental) block of  . 
 [ ]kv : a vector with kth component equal to 1, the rest equal to 0. 
 [ ]kl : a matrix with ( )th,k �  and ( )th,k�  components equal to 1, the rest 

equal to 0. 
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