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Abstract 

Simulation (stochastic) methods are based on obtaining random samples sθ  
from the desired distribution ( )p θ  and estimating the expectation of any 

function ( )h θ . Simulation methods can be used for high-dimensional distri-
butions, and there are general algorithms which work for a wide variety of 
models. Markov chain Monte Carlo (MCMC) methods have been important 
in making Bayesian inference practical for generic hierarchical models in small 
area estimation. Small area estimation is a method for producing reliable es-
timates for small areas. Model based Bayesian small area estimation methods 
are becoming popular for their ability to combine information from several 
sources as well as taking account of spatial prediction of spatial data. In this 
study, detailed simulation algorithm is given and the performance of a non- 
trivial extension of hierarchical Bayesian model for binary data under spatial 
misalignment is assessed. Both areal level and unit level latent processes were 
considered in modeling. The process models generated from the predictors 
were used to construct the basis so as to alleviate the problem of collinearity 
between the true predictor variables and the spatial random process. The per-
formance of the proposed model was assessed using MCMC simulation stu-
dies. The performance was evaluated with respect to root mean square error 
(RMSE), Mean absolute error (MAE) and coverage probability of correspond-
ing 95% CI of the estimate. The estimates from the proposed model perform 
better than the direct estimate. 
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1. Introduction 

Simulation (stochastic) methods are based on obtaining random samples of the 
parameters of interest from the desired distribution and estimating the expecta-
tion of any function of the parameters. It can be used for high-dimensional dis-
tributions, and there are general algorithms which work for a wide variety of 
models; where necessary, more efficient computation can be obtained by com-
bining these general ideas with tailored simulation methods, deterministic me-
thods, and distributional approximations. Markov chain Monte Carlo (MCMC) 
methods have been important in making Bayesian inference practical for generic 
hierarchical models in small area estimation. 

Small Area Estimation (SAE) is a strategy for improving estimation accuracy 
and delivering reliable parameter estimates for small areas, where a small area 
refers small sub-population in terms of sample size [1] [2] [3] [4]. To improve 
accuracy and reliability, a variety of estimators have been developed that com-
bine survey data for the target small areas with data from outside the survey, fre-
quently related to recent censuses and current administrative data. 

In small area estimation, statistical models can be utilized in a model assisted 
approach or model based approach. Even when a model is misspecified, [5] that 
use working models, in which a model is specified but desirable design based attri- 
butes are preserved, are called model assisted estimators. 

There are now a variety of model based approaches available, depending on the 
nature of the measurement (e.g., binary, count or continuous variable) [6] [7] 
and on the auxiliary data available for the individual units in the population versus 
those available only at the aggregate level (areal level or unit level) [8] [9]. 

Unit level estimations are expected to be more precise than areal level estimates 
on average [10]. Access to auxiliary data at the unit level, on the other hand, may 
be difficult. As a result, a fusion model that contains both unit and areal level 
data should be considered to accommodate this. The fusion small area model 
makes use of census auxiliary data at the area level, which is available in both 
observation and prediction regions, as well as individual survey variables. 

The fusion predictive model links individual survey variables with a hierar-
chical areal level model, allowing prediction to be carried out to other geograph-
ically defined small areas. A fusion small area model, which was successfully used 
by other authors [11], comprising both unit level survey and areal level auxiliary 
census data was adopted. 

The Bayesian approach to modeling has the ability to combine information 
from several sources using melding or data fusion [12]. The evaluation of pre-
diction accuracy is an important aspect of SAE [13] although its computation 
may be complicated. The Bayesian approach solves the problem automatically, 
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resulting to realizations of the target quantities’ from the posterior distribution 
[13]. 

A generalized linear model with or without spatial correlation structure was 
proposed by Ghosh et al. [14] using a hierarchical Bayesian framework. In addi-
tion, a hierarchical Bayesian model was proposed by Bakar et al. [11] for several 
categorical data under purely spatial setting. Besides, misalignment issues were 
addressed following this. Furthermore, difficulties with misalignment were re-
solved as a result of this. 

Under the hierarchical Bayesian framework, misaligned data models have re-
cently been presented to solve the issue of making inference for domains other 
than those for which survey data is available [11] [15] [16]. Following this, Tre-
visani and Gelfand [17] proposed a model to handle spatial misalignment for 
count data. For a categorical data under spatial misalignment, Bakar et al. [11] 
had proposed a hierarchical Bayesian model to handle this issue. 

Furthermore, Bakar and Jin [18] proposed for estimating a binary outcome 
variable under purely spatial setting for secondary geography where survey data 
were not collected. Primary and secondary geographies are spatially misaligned. 
However, the study by Bakar and Jin [18] considered a real level data. 

A fusion model developed by Muchie et al. [19] for the binary data has some 
appealing features. However, it has to be evaluated using simulation studies. As 
the model has closed forms for all required full conditionals, Gibbs sampler will 
be used for generating samples. 

As a result, the aim of this study was to assess the performance of the hierar-
chical Bayesian spatial fusion small area model for binary data under spatial mi-
salignment. 

2. Materials and Methods 
2.1. Model 

Here we introduce a spatial hierarchical statistical model for the binary data. Let 
( )i rY A  be a binary response variable for the thi  individual in area r, rA  de-

noting the thr  area and also ( )rA′X  be a set of p-covariates in the thr  area. 
Where 1, , ri N= � , 1, ,r n= �  and 1

n
rr N N

=
=∑  with ( )i ry A  being a reali-

zation of Bernoulli distribution, i.e. ( ) ( )i r i ry A ber P A   . 
Considering y be the realization of a random variable Y that can take values 

one and zero with probabilities p and 1 p−  respectively. Hence, ( )i ry A  is a 
Bernoulli response at area rA  and a logit-normal model with probability  

( )i rp A  is defined as: 

( ){ } ( ) ( ) ( )logit i r r r i rP A A A Aµ ω ε= + +               (1) 

where ( ) ( )20,i rA N εε σ  which is the unit level error. 
Further, 

( ) ( ) ( ) ( ) ( )
1

L

r l l r r r r
l

A x A A X A Aµ β ζ β ζ
=

= + = +∑           (2) 
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where ( )l rx A  is the thl  areal level predictor variable for 1,2, ,l L= � , lβ  is 
the corresponding model coefficient, and ( ) ( )20,rA N ζζ σ  is error process; 
and L is the number of predictors or covariates in the model. 

( )rAω , is spatially correlated process, modeled explicitly to take the statistical 
dependency due to spatial proximity. As understanding and defining the spatial 
process ( ) ( ) ( )( )1 , ,r nA A Aω ω ω ′= �  is often important for constructing the 
full conditional distribution of ω . 

The Moran’s I basis function [20] is one of the popular ways to model areal 
spatial process ω , and consequently, is useful for addressing problems with 
large spatial data [21]. Hence, for dimension reduction, m eigenvectors of a Mo-
ran’s I operator matrix are used, where m n< . Similarly, dimension reduction 
approach is used with a set of multiresolution spatial basis function [22] [23]. In 
multiresolution models [23] m knots are defined over the spatial domain by us-
ing reduced rank approximation [24] [25]. 

Hence, the spatial basis function for the spatial process ω  comprises the 
Moran’s I and multiresolution which is written as: 

( ) ( )AAω η ν= Φ +                        (3) 

where 

( ) ( ) ( )A A AM RΦ = ×                        (4) 

is a combination of eigenvectors ( )AM  of Moran’s I operator matrix ( )M A  
and multiresolution spatial basis ( )AR . The term 

( )20, vNν σ I

 
is an independent and identically distributed error process to capture the re-
maining random component so as to take the uncertainities arising from  

( )AηΦ . 
The process models generated from the predictors ( µ ) were used to construct 

the basis so as to alleviate the well-known problem of collinearity [26] between 
the true predictor variables and the spatial random process. Accordingly, the Mo-
ran’s I operator matrix is defined as 

( ) ( )( ) ( ) ( )( )1 1 ,AM A Wµ µ µ µ µ µ µ µ− −′ ′ ′ ′= − −I I            (5) 

where ( ) ( )( )1 , , nA Aµ µ µ ′= � , ( )AW  is n n×  nearest neighbor weight matrix 
containing 0 s and 1 s, and I  is an n n×  identity matrix. 

Spectral decomposition of Moran’s I operator matrix ( )M A  [21] were used 
to define n eigen vectors, ( )AM  and multiresolution spatial basis, ( )AR . A bi- 
square function was used to define the spatial basis function ( )AR . 

For 1, , ij r= �  basis functions of the ith resolution, we define the bi-square 
basis function in d-dimensional Euclidean space d  as, 

( ) ( )
( )

( )( )
22

1 ;
i

r ji i d
j r r j i r

i

A c
S A I A c Aφ

φ

  −  = − − < ∈  
   

         (6) 
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where ir  is the number of basis functions at the thi  resolution, ( )i
jc  is the 

center of the thj  basis function ( ) ( ).i
jS  at the thi  resolution, .  is the Euc-

lidean norm, iφ  is the radius of its spatial support (sometimes called the aper-
ture), and ( ).I  is an indicator function. 

The choice of { }iφ  determines the multiple resolutions, which are used to 
capture different dependence scales [22] [23] [25]. Some basis functions with 
centers outside the study domain are included to accommodate boundary effects 
[27]. 

When knot locations are equidistant over the domain, the value of iφ  is typ-
ically some multiple of the minimum distance between knot locations. [22] use a 
constant range iφ  for all knots of a given resolution. To accommodate knot lo-
cations that may not be equidistant, we let the ranges of the knots vary. Specifi-
cally, we define iφ  as a multiple of the minimum distance from knot points to 
all the other knots. In practice, iφ  is specified to be 1.5 times the minimum 
distance between basis function centers of the same resolution [22]. 

Another issue that is related to ( )AR  is the selection of the number and posi-
tion of knots. A regular grid, or its modification, is often a popular choice for the 
position of knots [28] [29]. An orthogonal spatial basis ( )AR  of order n m×  is 
constructed on the basis of the distances between the centroid of the areas and 
knot points. 

We model η , which is a vector of spatial random effect, by using a Gaussian 
distribution with zero mean and a lower dimensional covariance matrix Σ ,  

( )0,GPη Σ . Here Σ  comprises a smoothing parameter φ  and  
( ) ( ) ( ). A Ak Q′= Φ Φ  i.e. 

( ) ( ) ( ). ,A Ak Qφ φ ′Σ = × = ×Φ Φ                    (7) 

where Q is n n×  matrix with non-diagonal entries 1ijq =  if regions i and j are 
neighbors and 0 otherwise, and diagonal entries iiq  are equal to the number of 
region i’s neighbors [26]. It can be computed using the neighborhood weight 
matrix, ( )AW , as ( )( ) ( )A AQ diag W W= −1 , and 1  is a vector of 1 s. 

Since Q is singular [30], we use a spectral decomposition of Σ  to obtain the 
full conditional distribution of the spatial process η . Thus, we can write 

( ) ,φ ′Σ = Ψ ×Λ Ψ                        (8) 

where Ψ  is an orthogonal matrix of order m m×  and Λ  is a diagonal ma-
trix, see details in [21]. Following [20], in this research we assume that eigen 
vectors of Σ  are known and its eigen values are known up to a multiplicative 
constant. 

2.2. Predictive Distributions 

The geographical areas * *; 1, ,kA k n= �  are those in which prediction is required. 
Let the area *

kA  have overlapping geographical boundaries with , 1, ,rA j n= � . 
We assume that the areal relationships that are learned from rA  are largely 
maintained for *

kA  as they cover the same region and the same whole popula-
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tion. This leads that we can reuse all the parameters with few adjustment of spa-
tial correlation according to the new geographical classification. The fixed effect 
mean component and the spatial random component were computed separately 
and joined finally. Specifically, change of support is used to obtain the probabil-
ity distribution of the process ( )*

kAµ  at a second geographical boundaries. 
The change of support for the mean process ( )*

kAµ  in prediction location 
*
kA  is written as: 

( ) ( )*
*

*

1 d
r k

k r rA A
k

A A A
A

µ µ
⊆

= ∫                    (9) 

where, *A  is the area of the areal unit *A . The integral in Equation (9) is how-
ever difficult to solve, and there are approximation methods available to address 
this difficulty [31]. However, the approximations are best suited for situations 
when *

r kA A⊆ . This approximation techniques are derived using the concept of 
the posterior predictive distribution in the Bayesian inference approach. 

The posterior predictive distribution is the distribution of possible unobserved 
values conditional on the observed values. The posterior predictive distribution 
for unobserved values ( *

kµ ) can be found conditional on the observed values 
( kµ ). To find the predictive posterior distribution of *

kµ , we considered aux-
iliary data, *X  is the *n L×  design matrix, based on second geographical boun-
daries. Thus, the posterior predictive distribution of ( )*

kAµ  is written as 

( )( ) ( )( ) ( )

( ) ( )( )*

* * * *

* *
| ,

| | , , | , d

| , , ;

k k

kX

A A X X

E A X
θ µ

π µ µ π µ θ µ π θ µ θ

π µ θ µ

= ×

 =  

∫
        (10) 

where θ  contains all the parameters in the model. 
On the other hand, for the spatial random effect, new nearest neighbor weight 

matrix ( )*A
W  based on ( )* s

k
A ′  neighborhood in Moran’s I-matrix, and a new 

orthogonal spatial basis ( )*A
R  based on the distances between ( )* s

k
A ′  centroids 

and knot points in the space Ω  are used. Thus, ( )*
kAω  is obtained by incor-

porating ( )*A
Φ  in Equation (3). Where, * * *M RΦ = ×  is the basis function that 

contains *W  neighbourhood weight matrix calculated from at *
kA . ( )*A

M  and 

( )*A
R  respectively are the eigen vectors of Moran’s I operator matrix and multi-
resolution basis based on area *

kA , i.e. SA2s. 
The predictive distribution of ( )*

ky A  thus is obtained using MCMC samples 
and by composition of draws from the posterior distributions and ( )|π θ µ . 

2.3. Gibbs Sampler Algorithm 

The Gibbs sampler, introduced by [32], has been developed by [33]. The Gibbs 
sampler simulates from multidimensional posterior distributions by iterative 
sampling from the lower-dimensional full conditional posterior distributions. 

The conditional distributions are required for implementation of the model 
through Markov Chain Monte Carlo (MCMC) simulation. Full conditional den-
sities are derived by abstracting out from the full joint posterior distribution on-
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ly those elements including the parameter of interest and treating other compo-
nents as constants [34]. Accordingly, we obtain the full conditional distribution 
for the variance parameters and fixed effect coefficients of the model as given 
below where the detailed derivations are given in a manuscript done by the same 
authors [19]: 

( )
( ) ( )

( )
( ) ( )

2

1

1| . , log
2 2 1

log ;
1

N
i

i i

i

i

P ANIG a b A
P A

P A
A

P A

ε ε εσ µ ω

µ ω

=

 ′   + + − −    −    
  
× − −    −    

∑

      (11) 

( ) ( ) ( ) ( )2 1| . , ;
2 2
nIG a b A X A A X Aζ ζ ζσ µ β µ β ′+ + − −        

     (12) 

( ) ( )
2 1| . , ;

2 2 A A
nIG a bν ν νσ ω φ η ω φ η

 ′   + + − −     
  and       (13) 

11| . ,
2 2
mIG a bφ φφ η η−  ′ ′+ + ΨΛ Ψ   

              (14) 

1 1

2 2 2 2 2 2

1 1 1 1 1 1| . ,p pN X X I X X X Iβ
ζ β ζ β ζ β

β µ µ
σ σ σ σ σ σ

− −      
 ′ ′ ′+ + +                 

  (15) 

The Gibbs sampler updates the chain one component at a time, instead of 
updating the entire vector. In our case, starting from an initial values ( )02

εσ , 

( )02
ζσ , ( )02

vσ , ( )0φ  and ( )0β , at iteration t, the Gibbs sampler draws: 

( ) ( ) ( ) ( ) ( )( )1 1 1 12 2 2 2| , , ,
t t t t t

ε ε ζ νσ π σ σ σ φ β
− − − −



 

( ) ( ) ( ) ( ) ( )( )1 1 12 2 2 2| , , ,
t t t t t

ζ ζ ε νσ π σ σ σ φ β
− − −



 

( ) ( ) ( ) ( ) ( )( )1 12 2 2 2| , , ,
t t t t t

ν ν ε ζσ π σ σ σ φ β− −


 

( ) ( ) ( ) ( ) ( )( )12 2 2 2| , , ,
t t tt t

φ ε ζ νφ π σ σ σ σ β −


 

( ) ( ) ( ) ( ) ( )( )2 2 2| , , ,
t t tt t

ε ζ νβ π β σ σ σ φ

 
The densities on the right hand sides of the above are called the complete 

conditional distributions or full conditional distributions. We now provide step 
by step instructions for running this MCMC algorithm in the list below. 

1. Choose initial values for 2
εσ , 2

ζσ , 2
vσ , φ  and β  and denote them with 

( )02
εσ , ( )02

ζσ , ( )02
vσ , ( )0φ  and ( )0β  respectively. Let 0t = . 

2. Let 1t t= + . 
3. Update the components of 2

εσ , 2
ζσ , 2

νσ , φ  and β . 
- Let ( )2 t

εσ , ( )2 t

ζσ , ( )2 t

νσ , ( )tφ  and ( )tβ  equal to a value generated from 
the full conditionals of 2

εσ , 2
ζσ , 2

νσ , φ  and β  respectively. 
4. Repeat the steps 2 and 3 until convergence. 
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Furthermore, the predictive distribution of ( )*
ky A  is obtained using MCMC 

samples and by composition of draws from the posterior distributions and  
( )|π θ µ . We use the following algorithm to predict ( )*

ky A : 
1. Draw a sample ( )tθ , 1t ≥ , from the posterior distribution. 
2. By creating linear predictors using those parameters drawn in step 1, draw 

( )( )( )* t

kAµ  from the predictive posterior distributions for ( )*
kAµ  above. That 

is to replace the above integral by an empirical average of ( )( )* *| , ,kA Xπ µ θ µ  
computed using each of those samples in step 1, 

( )( )( )( ) ( ) ( )( )* * *

1

1| | , , .
St

t
k k

s
A A X

S
π µ µ π µ θ µ

=

≈ ∑
 

3. Then draw 

( )
( )

( )
*

*

ˆ
log ˆ1

t

i k

i k

P A

P A

      −     
from the bernouli logit model given above for the thi  individual, where  

1, , ki N= �  for each area *
kA . Hence the predictive equation can be written in 

terms of area *
kA  as 

( )( ) ( )( ) ( )( )* * * ,
t t t

k k i kA A Aµ ω ε+ +
 

where ( )*
kAω  is obtained by incorporating ( )*A

Φ  in Equation (3). ( )*A
Φ  is a 

combination of ( )*A
M  and ( )*A

R , which are the eigen vectors of Moran’s I op-
erator matrix and multiresolution basis based on area *

kA , i.e. SA2s. The term 

( )( )* t

i kAε  is obtained from the predictive conditional Gaussian distribution with 
mean 0 and variance �

( )
2

t

εσ . 
4. Finally for each draw (t) we obtain the predictive probabilities in each *

kA  
by averaging over the individual predicted probabilities as 

( )( )( ) ( ) ( )
*

*
*

ˆ
ˆ .k

t
t i ki A

k
k

P A
P A

N
∈

 
 =
 
 

∑

 

Steps 1 - 3 in this algorithm are for predicting individual level probabilities. 
However, interest is in obtaining predictions at the aggregated areal level *

kA . 
Hence, in step 4, we aggregate the results by averaging the individual predicted 
probabilities in each *

kA  for each draw (t). Note that, in the modelling hierarchy, 
probabilities are aggregated only at the prediction stage. 

2.4. Measures of Model Evaluation 

The R iterations for the direct and SAE model estimates were evaluated for bias, 
relative bias, mean squared error (MSE), root mean squared error (RMSE), per-
cent coverage for a 95% nominal rate, and 95% confidence interval width for di-
rect estimates and 95% credible interval width for the SAE models. Each of these 
metrics were calculated in two ways: 1) for an individual small area, and 2) av-
erage across all individual small areas. 
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Accordingly the first, Bias was calculated as the average difference between the 
posterior mean of the population total, îjθ  of small area i and iteration j, and 
the truth TiY : 

1

1 ˆ ;
R

i ij Ti
j

Bias Y
R

θ
=

= −∑
 

1

1 n

i
i

Bias Bias
n =

= ∑
 

The second, Relative bias, iRB , is defined as the bias relative to the truth for 
each small area ( i i TiRB Bias Y= ) and summed across all small areas  

( 1

1 n
iiRB RB

n =
= ∑ ). 

The third, Mean squared error (MSE) was calculated as the average squared 
deviations of the posterior mean of the population total from the true popula-
tion, and RMSE was the square root of these deviations: 

( )2

1

1 ˆ ;
R

i ij Ti
j

MSE Y
R

θ
=

= −∑
 

1

1 n

i
i

MSE MSE
n =

 =  
 
∑

 
where; TiY  refers true parameter value for the thi  small area, îθ  is the post-
erior mean of the population total, and R refers the number of iterations. A 
trade-off between bias and precision (mean squared error, ...) is present when 
applying a SAE model. 

The last one, Percent coverage was defined as the average number of times the 
95% SAE credible interval for ijθ , or the direct estimate 95% confidence inter-
val, included truth for each small area. The proportion of times the 95% CI of 
the estimated summary mean contains the true value. 

( )
1

1 ˆ95% CI of ;
R

i Ti ij
j

PC I Y
R
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It is desirable to have coverage near 95%. Coverage higher than 95% indicates 

an inefficient estimator whereas coverage less than 95% indicates an inaccurate 
estimator. 

3. Results and Discussion 
3.1. Simulation Design 

Proper and weakly informative prior distributions for the model parameters 
were used. For the fixed effect coefficients ( β ) we used conjugate normal dis-
tribution as the prior distribution with mean zero and a variance of 10 to represent 
weakly informative and proper prior specification. For the variance and smooth-
ing parameters we consider a conjugate inverse-gamma prior distributions, weakly 

https://doi.org/10.4236/ojs.2021.116058


K. F. Muchie et al. 
 

 

DOI: 10.4236/ojs.2021.116058 1002 Open Journal of Statistics 
 

informative hyper-parameters for the inverse-gamma prior. 
As noted in [35], inverse-gamma prior with very small hyper-parameters does 

not have any proper limiting posterior distribution. Hence, we consider a proper 
and weakly informative invers gamma prior with reasonable values of the shape 
hyper-parameter 2a = ; and the rate hyper-parameters 1b =  [36] [37], which 
is popularly suggested in literature [38] [39] [40]. Therefore, for the variance 
parameters we let the shape and rate hyper-parameters of the inverse gamma 
prior distribution be 2 and 1, as the inverse gamma (2, 1) distribution is often 
treated as proper and weakly informative [36] [37]. 

To get small area estimation at rA , a total of 400 square grid cells were con-
sidered where 3000N =  population points were generated. Two predictor va-
riables, ( ) , 1, 2li rx A l =  were generated and correspondingly the binary re-
sponse, ( )i ry A  (“yes” = 1, “no” = 0) was considered to generate the population 
values. The probabilities were hence calculated accordingly in each grid cell by 
identifying the “yes” simulated respondents. The aggregated values of ( )li rx A  
at each grid cell rA  were treated as census information in the model. 

To clarify the insight of the data layout over the domain of the study area we 
have clearly stated it as follows. Firstly, we took a random sample of 10% [20] 
[41] of the total population and identify those points inside the square grid cells. 
Hence, the sample data did not contain all the square grid cells. Figure 1 & Fig-
ure 2 showed the squared grid cells and a representation of the samples in a grid 
cell together with the population points that were generated in that cell. Figure 1 
showed that the sampled grid cells (shaded in grey colour) ( ) were superimposed,  

 

 
Figure 1. Representation of the population and sample grid cells as well as two resolu-
tions of knot points. 
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Figure 2. The samples and population points in one squared grid cell. 

 
which is based on randomly selected sample points; two different resolutions of 
knot points (∗ , ◊ ) used for the model proposed were also superimposed. 

Secondly, the sample values of the response variable, the aggregated values of 
auxiliary variables and other spatial components were used to find estimates of 
hyper-parameters under the SA1. 

Thirdly, based on data in rA , we generate small area estimates for the second 
geographic areas *

kA  (i.e. SA2) having spatial misalignment with the SA1, rA . 
The data are generated in a manner similar to that of rA  small area estimation. 
However, we now aim predictions for ( )*

i kp A , individual level probability at 
the 100 grid cells, using different knot point resolutions. 

3.2. MCMC Output and Diagnosis 

Regarding the software implementation, all simulations were performed using 
the freely available software “R version 4.0.3 (2020-10-10)”. It took 9 hours to 
generate an MCMC sample of size 50,000 using a machine with Intel(R) 
Core(TM) i7-4600U CPU @ 2.10 GHz 2.70 GHz and RAM of 8.00 GB (7.90 GB 
usable). 

A gibbs sample of size 50,000 was generated and the first 10,000 samples were 
discarded as the burn-in period. Further, thinning was applied, every 10th sample 
selected discarding all others, so as to reduce auto-correlation, to reduce burden 
on computer memory/storage and to facilitate great deal of post-processing. 
Hence, 4000 posterior samples were collected after burn-in and thinning. Ac-
cordingly, an MCMC sample of size 4000 were used for the entire analysis here 
under. Accordingly, the trace plot, density plot and auto-correlation plots based 
on the final 4000 MCMC samples were given below. 

https://doi.org/10.4236/ojs.2021.116058


K. F. Muchie et al. 
 

 

DOI: 10.4236/ojs.2021.116058 1004 Open Journal of Statistics 
 

Figure 3 showed the trace plots of the MCMC samples for selected model pa-
rameters of the model. Each plot illustrated that the chain was sampling from 
their corresponding stationary distributions. The MCMC chain of variance pa-
rameters and the entries of φ  were mixed well and converged quickly, while the 
MCMC samples of regression coefficients, iβ , appear to have relatively slow to 
converge. 

The quick convergence of the predictive sample guarantees that the subsequent 
analyses (such as the averaged predictive means of ( ){ }i ry A  and ( ){ }i rp A ) 
are based on appropriate predictive distributions. 

Similarly, the kernel density plot (Figure 4) also showed there is no serious 
problem of convergence as the plots are uni-modal. Fast decay of auto-correlation 
(Figure 5) as the lags increase also supplements the above statement regarding 
convergence. 

Henceforth, probabilities for the second geographical areas were computed 
from posterior predictive distribution. All the following model comparisons 
were based on these probabilities. 

3.3. Model Comparison 

The estimates from the model, hierarchical Bayesian fusion spatial small area 
model, were compared with direct estimate. The RMSE, MAE and 95% proba-
bility coverage were considered for comparison purpose. Accordingly, the RMSE 

 

 
Figure 3. Trace plot of parameters based on MCMC samples. 
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Figure 4. Kernel density plot of parameters based on MCMC samples. 

 

 
Figure 5. ACF plot of parameters based on MCMC samples. 
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Table 1. MCMC summary statistics. 

Model RMSE MAE Coverage probability 

Proposed 0.45 0.43 7.5% 

Direct 0.49 0.47 3.8% 

 
and MAE of the estimates from proposed model is less than that of the direct es-
timate showing the proposed model performs better (Table 1). Additionally, the 
95% probability coverage for the estimate from the proposed model was greater 
than that of the direct estimate. This also strengthens the improvement of the 
proposed model. 

4. Concluding Remarks 

In this study, we have assessed the performance of the recently developed spatial 
hierarchical Bayesian fusion spatial small area model for binary data under spa-
tial misalignment. The process models generated from the predictors were used 
to construct the basis so as to alleviate the well-known problem of collinearity 
between the true predictor variables and the spatial random process. The perfor-
mance of the proposed model was assessed using simulation studies. The model 
proposed has the ability to address the large dimensional spatial problem by re-
ducing dimension through the use of basis function knots. The proposed model 
performs better than the direct estimate. The developed model can be applied in 
many broad areas including but not limited to health sciences, public health, agri-
culture, and economics. 
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