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Abstract 

Kenyan insurance firms have introduced insurance policies of chronic ill-
nesses like cancer; however, they have faced a huge challenge in the pricing of 
these policies as cancer can transit into different stages, which consequently 
leads to variation in the cost of treatment. This has made the estimation of 
aggregate losses of diseases which have multiple stages of transitions such as 
cancer, an area of interest of many insurance firms. Mixture phase type dis-
tributions can be used to solve this setback as they can in-cooperate the tran-
sition in the estimation of claim frequency while also in-cooperating the he-
terogeneity aspect of claim data. In this paper, we estimate the aggregate losses 
of secondary cancer cases in Kenya using mixture phase type Poisson Lindley 
distributions. Phase type (PH) distributions for one and two parameter Pois-
son Lindley are developed as well their compound distributions. The matrix 
parameters of the PH distributions are estimated using continuous Chapman 
Kolmogorov equations as the disease process of cancer is continuous while 
severity is modeled using Pareto, Generalized Pareto and Weibull distribu-
tions. This study shows that aggregate losses for Kenyan data are best esti-
mated using PH-OPPL-Weibull model in the case of PH-OPPL distribution 
models and PH-TPPL-Generalized Pareto model in the case of PH-TPPL dis-
tribution models. Comparing the two best models, PH-OPPL-Weibull model 
provided the best fit for secondary cancer cases in Kenya. This model is also 
recommended for different diseases which are dynamic in nature like can-
cer. 
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1. Introduction 

Aggregate losses are estimated by in-cooperating both claim frequency and 
claim severity distributions. Pavel (2010) [1] reviewed methods used to calculate 
distributions of aggregate losses. Robertson (1992) [2] applied Discrete Fourier 
Transform in estimation of aggregate losses from frequency and severity distri-
butions. Rono et al. (2020) [3] developed compound distribution to model ex-
treme natural disasters in Kenya. Mohamed et al. (2010) [4] introduced use of 
simulation approach in estimation of aggregate losses which can be employed 
when frequency and severity distribution cannot be combined to derive a com-
pound distribution. Aggregate loss distributions are based on collective risk 
model expressed as:  

1

N

N i
i

S X
=

= ∑                           (1) 

where: 

iX  is the severity distribution and N is the claim count distribution. The dis-
tribution of N in this paper is considered to follow mixed PH Poisson distribu-
tions.  

Phase type distributions are constructed, when mixture distributions are con-
voluted resulting to an interrelated Poisson process occurring in phases. Phase 
type distributions were introduced way back by Erlang (1909) [5] and it has been 
advanced by Marcel F. Neuts (1981) [6] and Assussen (2003) [7] among others. 
Mogens Bladt (2005) [8] introduced phase type distributions in risk theory while 
O’cinneide (2017) [9] highlighted on Phase type distributions as well as their in-
variant polytopes. Wu et al. (2010) [10] developed phase type distributions when 
frequency distributions followed Panjer class ( ), ,0a b  while Kok et al. (2010) [11] 
used phase type distributions of Panjer class ( ), ,1a b  to model claim frequency.  

Markov chains were introduced by Andrei Markov (1856-1922). Nurul et al. 
(2019) [12] proposed a simple forecasting model of predicting the future air quali-
ty using Markov chains which in-cooperated the Markov chains as an operator 
of evaluating pollution distribution in the long run. Yajuan et al. (2018) [13] 
used Markov chains to model demand for stations in Bike sharing systems. In 
this study, the concept of Markov chains is used to determine the matrices of the 
phase type distributions used in modeling claim frequency. 

Frequency data is used to model occurrences in different areas such as engi-
neering, insurance, biology etc. Poisson distribution is often used to model count 
data; however, it is based on the assumption that variance to mean ratio is unity 
(equi-dispersion) which is not applicable to real data; hence, it is considered as 
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an inflexible model. Most real life data either experience over dispersion where 
variance exceeds the mean or under dispersion where the mean exceeds the va-
riance which can be modeled using Poisson mixtures [14]. Poisson Lindley dis-
tributions are perfect examples of Poisson mixtures where characteristics of 
Poisson distribution follow some characteristics of Lindley distribution. One 
parameter Poisson Lindley which can model over dispersed data was introduced 
by Sankaran (1970) [15] while Shanker and Mishra (2014) [16] developed two 
parameter Poisson Lindley which further research has justified that it can model 
over dispersed data. 

In the insurance sector, when calculating aggregate losses for chronic diseases 
which have various stages like cancer the claim frequency distributions consi-
dered do not in-cooperate the different stages of such diseases. In-cooperating 
phase type distributions solve this short coming of ordinary distributions. Fur-
ther considering mixed phase type distributions improves modeling of claim 
frequency data as it considers the heterogeneity aspect of claim data. In this pa-
per, we develop PH one parameter Poisson Lindley distribution and PH two pa-
rameter Poisson Lindley distributions where the mixing distribution follows PH 
Lindley distribution. The resulting PH distributions are used to model claim 
numbers of secondary cancers in Kenya. Section 1 has a brief introduction to 
Poisson distributions and Poisson Lindley distributions.  

The structure of this paper is as follows: Section 2 will discuss construction of 
phase type distribution using PH Lindley distributions which will later be ap-
plied in modeling of the aggregate losses. Compound distributions from the 
frequency and severity distributions are developed in Section 3. Aggregate losses 
for the data are estimated using Discrete Fourier Transforms and the results 
discussed in Section 4 and Section 5 outlines the conclusions. 

2. Proposed Phase Type Poisson Lindley Distributions 

In this section we develop phase type distributions for one parameter Poisson 
Lindley and two parameter Poisson Lindley. Phase type Poisson Lindley distri-
butions are derived when the mixing distribution follow phase type Lindley dis-
tribution.  

2.1. Phase Type One Parameter Poisson Lindley Distribution 

Definition 1. A random variable X is said to be a phase type one parameter 
Poisson Lindley distribution if it follows: 

( )| ~X Poλ λ  

( )| ~ PH OPLλ Λ − Λ  

for 0λ >  and Λ  is m m∗  matrix. 
Theorem 1. If ~X PH OPPL−  distribution then the probability distribu-

tion function of X is:  

( )
( )

( ){ }
2

T
3; 2 1xf x x I

I
γ +

Λ
Λ = + + Λ

+ Λ





               (2) 
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where Λ  is M M∗  and I is an identity matrix. 
Proof: 
If ( )| ~X Poλ λ  and ( )| ~ PH OPLλ Λ − Λ , then the pdf of variable X is 

expressed as; 

( ) ( ) ( )
0

| ; dP x Pr x fλ λ λ
∞

= Λ∫  

where ( );f λ Λ  is ( )PH OPL− Λ . 

( ) ( )
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I
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= + > Λ = ∗

+ Λ
 Λ

= + + Λ  
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= + + Λ
+ Λ

∫

∫




         (3) 

Properties of Phase Type One Parameter Poisson Lindley Distribution 
The rth moments of PH-OPPL distribution is given by:  

( ) ( )

( )

( ) ( )

( )
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∫

∫





               (4) 

The expectation and variance of PH-OPPL distribution can be easily obtained 
from Equation (4) as: 

1) Expectation 

( )
( )
( ) ( )

T1! 1 1 2 1
I IE x
I I

γ
+ + Λ  + Λ = =

Λ Λ + Λ Λ +



               (5) 

2) Variance 

( )
( )

( )

( ) ( )

2

2
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T

2

2! 2 1 2
( )
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I I
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γ

+ + Λ   + Λ  = −  
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= +

Λ Λ +Λ +





             (6) 

The probability generating function of PH-OPPL distribution is given by:  

( ) ( ) ( )

( ) ( )

( )
( )
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          (7) 
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The parameter Λ  of PH-OPPL distribution is estimated using continuous 
Chapman-Kolmogorov equation. 

2.2. Phase Type Two Parameter Poisson Lindley Distribution 

Definition 2. A random variable X is said to be a phase type two parameter 
Poisson Lindley distribution if it follows: 

( )| ~X Poλ λ  

( )| , ~ ,PH TPLλ α αΛ − Λ  

for 0, 0α λ> >  and Λ  is M M∗  matrix. 
Theorem 2. If ~X PH TPPL−  distribution then the probability density 

function of X is expressed as:  

( )
( )

( )2
T

2; , 1x

x I
f x I

II

α
α γ

α+

+ Λ
Λ = + Λ ++ Λ  



               (8) 

where 0α > , Λ  is M M∗  and I is an identity matrix.  
Proof: 
If ( )| ~X Poλ λ  and ( )| , ~ ,PH TPLλ α αΛ − Λ , then the pdf of variable X 

is given by;  

( ) ( ) ( )
0

| ; , dP x Pr X x fλ λ α λ
∞

= = Λ∫  

where ( ); ,f λ αΛ  is ( ),PH TPL α− Λ .  
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       (9) 

Properties of Phase Type Two Parameter Poisson Lindley Distribution 
The rth moments of PH-TPPL distribution is given by:  
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The expectation and variance of PH-TPPL distribution can be easily obtained 
from Equation (10) as: 

1) Expectation  

( ) ( )

( )

2
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T

e d

2 1

E x
I

I
I

λλ α λ λ
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αγ
α

∞ −ΛΛ
= +
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Λ Λ +

∫
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                (11) 

2) Variance  

( ) ( ) ( ) 22Var x E x E x= −     
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The probability generating function of PH-TPPL distribution is given by:  
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            (13) 

The value of Λ  is known hence the value of α  can be obtained from Equ-
ation (11) if the value of ( )E x  is known. 

2.3. Shape of Probability Function of PH-OPPL and PH-TPPL  
Distributions 

Matrix Λ  was determined using continuous Chapman-Kolmogorov equation 
for cancer data in Kenya and the values of γ  is the stationary probabilities ob-
tained using the formula 0

k
kπ π= Λ . The values of Λ  for three state Markov 

model represents cancer patients who transit from Healthy-Leukemia-Dead 
states, four state Markov model represents patients who transit from Healthy- 
Liver-Colon-Dead states, five state Markov model represents Healthy-Stomach- 
Pharynx-Colon-Dead states and six state Markov model represents patients 
transiting from Healthy-Oesophagus-Stomach-Lung-Kidney-Dead states. The 
values of Λ  for different states are:  

0.7900 0.2100 0 0
0.8783 0.1217 0

0 0.2898 0.7102 0
0 0.3938 0.6062

0 0 0.8985 0.1015
0 0 1.0000

0 0 0 1.0000

 
   
   
   
    

 
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0.4851 0.5149 0 0 0 0
0.8364 0.1636 0 0 0

0 0.1223 0.8777 0 0 0
0 0.3892 0.6108 0 0

0 0 0.1533 0.8467 0 0
0 0 0.6688 0.3312 0

0 0 0 0.4410 0.5590 0
0 0 0 0.5524 0.4476

0 0 0 0 0.8668 0.1332
0 0 0 0 1.0000

0 0 0 0 0 1.0000

 
   
   
   
   
   
   
       

 

The shape of probability function of phase type one parameter Poisson Lind-
ley is expressed as: 

Figure 1 shows that phase type one parameter Poisson Lindley is a long tailed 
distribution. 

The shape of probability function of phase type two parameter Poisson Lind-
ley is expressed as: 

Figure 2 shows that phase type two parameter Poisson Lindley is a long tailed 
distribution. 
 

  
(a)                                                   (b) 

  
(c)                                                   (d) 

Figure 1. Pdf plots of PH-OPPL for different values of Λ. 

https://doi.org/10.4236/ojs.2021.115049


C. Mwende et al. 
 

 

DOI: 10.4236/ojs.2021.115049 845 Open Journal of Statistics 
 

  
(a)                                                   (b) 

  
(c)                                                   (d) 

Figure 2. Pdf plots of PH-TPPL for different values of Λ. 

3. Compound Phase Type Distribution 

Compound distribution in the actuarial field is the total loses in the group of in-
surance policies. In this section we develop compound phase type distributions 
(CPHD) which can be used to model secondary cancer cases. 

Definition 3. Let N be a r.v with probability generating function ( )F S  and 

1, , NX X  be a set of iid random variable with a common probability generat-
ing function ( )G S  and is independent of N, then the probability generating 
function of the compound distribution is expressed as:  

( ) ( )H S F G S=                          (14) 

Unlike ordinary compound distributions which do not consider transition 
phases of diseases, (CPHD) in-cooperates the transition states. Probability gene-
rating functions of compound distributions can be derived by convolution of 
probability generating function of two distributions as shown in Equation (14).  

Theorem 3 (Compound one parameter Poisson Lindley distribution). If 
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the pgf of ( )~N PH OPPL− Λ  the compound pgf of N is:  

( )
( )( )
( )( )

2
T

2

2
1

1

x

x

L G S I
H S

I L G S I
γ

 Λ + −  Λ   =  + Λ  Λ + −      



            (15) 

where ( )xL G S    is the Laplace transform of the severity distribution as most 
continuous distributions their pgf is not available. 

Proof: 

( ) ( ) ( )
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 Λ + −  Λ   =  + Λ  Λ + −      





           (16) 

Theorem 4 (Compound two parameter Poisson Lindley distribution). If 
the pgf of ( )~N PH TPPL− Λ  the compound pgf of N is:  
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           (17) 

where ( )xL G S    is as defined in theorem (3). 
Proof: 
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The continuous distributions considered in this research are; Weibull, Pareto 
and Generalized Pareto distributions hence their Laplace transforms will be de-
rived and replaced in Equations (16) and (18) to get the pgf of their compound 
distribution using PH-OPPL and PH-TPPL distributions respectively. The Lap-
lace transform of Weibull, Pareto and Generalized Pareto are derived as: 

1) Weibull distribution 
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2) Pareto distribution 

( ) e sx
xL S E − =    
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3) Generalized Pareto distribution 

( ) e sx
XL S E − =    

( )
( )( )

( )

( )
( )

( )
( )

1

0

0
0

1 1
0

0

0

e d
,

1 e d
,

1 e d
,

1
,

sx
X

k
sx

k

k sx
k

k

k k
k

xL G S x
x

xx x
k

x x

k
s

α

α γ

α
γ

γ
γ

γ α

β α γ λ

α γ
λλ β α γ

α γ
λ β α γ λ

α γ α
λ β α γ λ

−
∞ −

+

∞∞ −

=

∞ ∞ + + − −

=

∞

+
=

=
+

+ 
=  

 
− +

=

− + Γ +
=

∫

∑∫

∑ ∫

∑

          (21) 

Replacing Equations (19), (20) and (21) in Equation (16) the pgf of the com-
pound distributions of PH-one parameter Poisson Lindley with Weibull, Pareto 
and Generalized Pareto respectively are: 

1) Compound PH-OPPL-Weibull distribution 
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2) Compound PH-OPPL-Pareto distribution  
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3) Compound PH-OPPL-Generalized Pareto distribution  
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Replacing Equations (19), (20) and (21) in Equation (18) the pgf of the com-
pound distributions of PH-two parameter Poisson Lindley with Weibull, Pareto 
and Generalized Pareto respectively are:  

1) Compound PH-TPPL-Weibull distribution  
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2) Compound PH-TPPL-Pareto distribution  
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3) Compound PH-TPPL-Generalized Pareto distribution  
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4. Data Analysis, Results and Discussions 
4.1. Severity and Frequency Probabilities 

The cancer data considered in this research is obtained from a medical facility in 
Kenya. The cancer transitions states considered are Healthy-Leukemia-Dead 
states for 3 state model, Healthy-Liver-Colon-Dead states for four state model, 
Healthy-Stomach-Pharynx-Colon-Dead states for five state model and Healthy- 
Oesophagus-Stomach-Lung-Kidney-Dead states for six state models. The values 
of Λ  for the data are obtained using continuous Chapman-Kolmogorov equations 
expressed as:  
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The values of Λ  for three, four, five and six state using the data obtained 
were as shown in Section 2.3. 

The severity distributions considered in this research are Weibull, Pareto and 
Generalized Pareto distributions. DFT requires severity probabilities to be dis-
crete hence they will be discretized using method of mass rounding which is ex-
pressed as:  
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The pdf of Wei-bull, Pareto and Generalized Pareto distributions respectively 
are expressed as;  
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The frequency and severity probabilities for secondary cancer cases are: 
(Table 1). 
 
Table 1. Claim frequency and severity probabilities. 

States PH-OPPL PH-TPPL Weibull Pareto Gen Pareto 

3 state 0.011 0.0078 0.1506 0.1099 0.0192 

4 state 0.0082 0.0054 0.1266 0.0591 0.0091 

5 state 0.0083 0.0055 0.1703 0.1904 0.0429 

6 state 0.0.0083 0.0054 0.1775 0.2488 0.0730 
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4.2. Discrete Fourier Transform 

There are different numerical methods used in estimation of aggregate losses 
such as; Monte Carlo, Panjer recursive model, Fourier transforms and Direct 
Numerical Integration. Panjer recursive model is applicable when the claim fre-
quency distributions follow either Panjer class ( ), ,0a b  or class ( ), ,1a b . In this 
study we will consider Discrete Fourier Transform (DFT) in estimation of the 
aggregate losses. Robertson (1992) applied Fourier transforms in computation of 
aggregate losses [2]. Pavel (2010) [1] reviewed these numerical methods and 
concluded that each method had it strength and weaknesses hence they should 
be chosen according to the study. DFT mostly preferred as it is arguably said to 
be the most elegant and powerful technique in evaluation of aggregate loss 
probabilities when claim amount iX  is both discrete and continuous [17]. 

The algorithm of DFT of aggregate losses requires computation of DFT of 
frequency and DFT of severity separately.  

Definition 4 (Discrete Fourier Transform). Let nX  be the severity or fre-
quency distribution of the claim data. For any discrete function kX  the Dis-
crete Fourier transform is the mapping;  
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Expression (29) is very complex to work with hence to reduce its complexity 
we apply Euler’s formula and it becomes: 
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which is the DFT of the severity or frequency probabilities. The severity and 
frequency probabilities are of length 8 and hence the matrix W must be a primi-
tive 8th root of unity therefore Equation (30) can be rewritten as: 

( ) ( )
7

0

kn
N

N
X k X n W

=

= ∑                     (31) 

The frequency or severity probabilities will be padded with equal number of 
zero’s as its elements in order to perform no wrap convolution. The DFT algo-
rithm is as follows: 

1) Multiply the matrix kn
NW  with the frequency or severity probabilities to get 

the DFT of frequency or severity probabilities.  
2) Compute DFT of DFT of frequency and severity by multiplying DFT of 

frequency probabilities with the DFT of the severity probabilities and conse-
quently multiplying the resulting vector with the matrix kn

NW .  
3) Select the values without the complex i and divide each value by the num-

ber of elements in the vector of frequency or severity distribution and arrange 
the resulting probabilities in reverse except for the first probability.  
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4) Values corresponding to original frequency and severity values are the ag-
gregate loss probabilities.  

The values of aggregate loss probabilities using DFT are: 
 
Table 2. Aggregate loss probabilities. 

States PH-OPPL/Wei PH-OPPL/Par PH-OPPL/Gen-par PH-TPPL/Wei PH-TPPL/Par PH-TPPL/Gen-par 

3 state 0.00117468 0.00085722 0.00093696 0.0132528 0.00300027 0.00052416 

4 state 0.00180072 0.00105444 0.00104696 0.02102016 0.00488845 0.00082059 

5 state 0.00284028 0.00240871 0.0029879 0.00332912 0.0102232313 0.00201259 

5 state 0.00381366 0.00388731 0.00579889 0.04507728 0.01749645 0.00411375 

 
The values of Table 2 can be represented graphically as: 

 

 
(a) 

  
(b)                                                  (c) 

Figure 3. Aggregate loss probabilities. 
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Figure 3(a) shows aggregate loss probabilities using PH-OPPL distribution 
with severity distributions and it indicates that PH-OPPL with Weibull and Pa-
reto were similar to the actual aggregate loss probabilities while PH-OPPL with 
generalized Pareto distribution overestimate the aggregate losses for six state 
model. Figure 3(b) shows aggregate loss probabilities using PH-TPPL distribu-
tion with Pareto and generalized Pareto provided a better fit for secondary can-
cer data while PH-TPPL with Weibull overestimated the aggregate losses. How-
ever, PH-OPPL with Weibull and PH-TPPL with generalized Pareto provided a 
better fit compared to PH-OPPL-Pareto model and PH-TPPL Pareto respective-
ly hence they are compared in Figure 3(c) indicating that PH-OPPL with Wei-
bull provided the best fit for aggregate loss data of secondary cancers in Kenya. 
PH-OPPL-Weibull model can be used to provide better estimates of aggregate 
losses for secondary cancer data in Kenya. 

5. Conclusion 

Mixed phase type distributions are developed to model secondary cancer cases 
in Kenya. Unlike ordinary distributions which do not in-cooperate the transition 
of different states, the distributions proposed here take into consideration tran-
sition states while modeling claim frequency data. The distributions are based on 
Poisson and Lindley distributions, where PH-OPPL-Weibull provided the best 
for PH-OPPL models while PH-TPPL-Generalized Pareto provided the best fit 
for PH-TPPL models. This model improves estimation of aggregate loses as it 
in-cooperates transition probabilities of different states of cancer as well as he-
terogeneous aspect of claim data. This greatly improves estimation of insurance 
policies for diseases which transit to different state such as cancer hence im-
proving the financial positions of the insurance firms as it will improve estima-
tion of its reserves. This model, however, is only applicable in risk theory for 
diseases which have multiple transitions states. Further research can be done on 
this study factoring in patients who were censored in this study and also the 
same study can be carried out for disease such as HIV-AID which has transition 
states. 
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