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Abstract 
Count data that exhibit over dispersion (variance of counts is larger than its 
mean) are commonly analyzed using discrete distributions such as negative 
binomial, Poisson inverse Gaussian and other models. The Poisson is charac-
terized by the equality of mean and variance whereas the Negative Binomial 
and the Poisson inverse Gaussian have variance larger than the mean and 
therefore are more appropriate to model over-dispersed count data. As an al-
ternative to these two models, we shall use the generalized Poisson distribu-
tion for group comparisons in the presence of multiple covariates. This prob-
lem is known as the ANCOVA and is solved for continuous data. Our objec-
tives were to develop ANCOVA using the generalized Poisson distribution, 
and compare its goodness of fit to that of the nonparametric Generalized Ad-
ditive Models. We used real life data to show that the model performs quite 
satisfactorily when compared to the nonparametric Generalized Additive 
Models. 
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1. Introduction 

The Poisson distribution is commonly used to model count data. However, a re-
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striction of this distribution is that the response variable must have a mean equal 
to the variance. This restriction does not often hold true for many biological and 
epidemiological data. In many applications the variance can be much larger than 
the mean, a phenomenon known as “over dispersion”. This over dispersion may 
occur due to population heterogeneity, or presence of outliers in the data [1]. An 
analysis of data with overly dispersed counts can lead to the underestimation of 
parameter standard error, if overdispersion is ignored. A review of the issue of 
overdispersion in both binary and count data was reviewed by Hinde and De-
metrio [2], and in a more recent review by Hayat and Higgins [3]. Diagnosing 
and accounting for overdispersion is not a simple issue and should be appro-
priately dealt with to avoid bias in interpreting the results. 

The Negative-Binomial (NB) distribution has been used as an alternative to 
the Poisson distribution for modeling data that exhibit overdispersion. The NB 
has two parameters and a variance that is a quadratic function of the mean. NB 
model has been the model of choice for the analysis of overly dispersed count 
data. The NB regression was reviewed by Hinde and Demetrio [2]. Joe and Zhu 
[4] drew a comparison between the NB and a mixture-based generalization of 
the Poisson distribution. 

In this paper we discuss several inferential statistical issues related to a mod-
ified form of the Generalized Poisson Distribution (GPD). The GPD distribution 
was introduced to the statistical literature by Consul and Jain [5] and a detailed 
account of its properties was given by Consul [6]. The distribution has two pa-
rameters, and a variance that is cubic function of the mean. The distribution has 
been used to analyze data in the fields of genetics [7] as a queuing model [8] [9] 
[10] and genomics [11]. The modified form of the GPD, which we shall call 
“Modified Poisson Distribution” (MGPD) was first discussed in [12]. The mod-
ification was a double parametric transformation on the original parameters of 
the GPD. The main purpose of the transformation was to achieve parameters 
orthogonality [13] and make the MGPD a member of the class of “Generalized 
Linear Models” [14]. Recently Shoukri and Al-Eid investigated several inference 
procedures in the two samples situation [15]. 

This paper has three-fold objectives. In Section 2, we present the model. We 
then, assume that we have k independent samples and we demonstrate how to 
construct statistical testing procedures on the dispersion parameters. Specifical-
ly, we first validate the hypothesis of homogeneity of dispersion parameters, 
thereafter we test the significance of the common dispersion parameter. In Sec-
tion 3 we test the hypothesis of equality of k-means in the presence of overdis-
persion. When covariates are measured, testing the equality of group means is 
therefore equivalent to the Analysis of covariance (ANCOVA) in the presence of 
overdispersion. In Section 4 we use the COVID-19 mortality data to draw a 
comparison between the MGPD, and the Generalized Additive Models (GAM). 
We demonstrate the differences between the two analytic strategies and high-
light the superiority of the MGPD in the analysis of count data exhibiting over-
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dispersion in Section 5. General discussion is presented in Section 6. 

2. The Model and Its Parameters Estimation 
2.1. Modified Generalized Poisson Distribution 

The GPD was introduced by Consul and Jain [5] 
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The GPD whose probability function is given in (2.1) reduces to the well-known 
Poisson distribution when 2 0λ = . Therefore the parameter 2λ  with the above 
restriction on its range, is considered the dispersion parameter. Shoukri and 
Mian [12] employed the parametric transformations: 
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                       (2.2) 

Using the transformations in (2.2) we therefore have: 
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For fixed  , the function ( ).g  in (2.3) is the natural parameter transforma-
tion which renders the GPD a member of the linear family of exponential class 
(see; [14]), with a general structure: 

( ) ( ) ( ) ( )expf x h x T x Aφ φ= −                   (2.4) 

We call the transformed GPD, the “Modified Generalized Poisson Distribu-
tion” or MGPD. 

Shoukri and Mian [12] showed that a recurrence relation among the thr  
non-central moments rϑ′  is such that: 

( )2
1

r
r r

ϑ
ϑ σ µ µϑ
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′∂′ ′= +
∂

                   (2.5) 

From (2.5) we can show that: 

( ) ( ) ( ) ( )22
0 11, ,  and 1 varE Y Yϑ ϑ µ σ µ µ µ′ ′≡ ≡ = = + ≡       (2.6) 

That is the variance is a cubic function of the population mean. We shall deal 
with the situation when 0> . 

2.2. Point Estimators 

Our approach for parametric estimation in this section will be for a single ran-
dom sample. If 1 2, , , nY Y Y  is a random sample from the GPD (2.3), Consul 
and Shoukri [16] showed that the unique maximum likelihood estimates of the 
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parameters exist if and only if the sample variance is larger than the sample 
mean. Here we shall use the sample moments to obtain estimators for the model 
parameters ( ),µ  . 

Equating the first two sample moments ( )2,y s  to their corresponding pop-
ulation moments 

( ) ( )
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=
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and solving for the parameters we get: 

( ) ( ) ( )
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                   (2.7) 

The variance of the moment estimators of the mean and the dispersion para-
meter are respectively given by Shoukri and Al-Eid [15] as: 

( ) ( )2ˆvar 1 nµ µ µ= +                    (2.8a) 
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2.2.1. Homogeneity of Dispersion Parameters 
Suppose that we have k  independent random samples from (2.3), which we 
denote ( )~ ,ij i iY GPD µ   with in  observations from the thi  population 
( )1, 2, ,i k=  . 

Wedenote the variance of the estimator of   given in Equation (2.8) by iv  
and, let 1i iw v= , iv  is given in (2.8b). 

Cochran [17] developed a general statistic Q which may be used to test the 
homogeneity of several population parameters. The Q statistics has asymptoti-
cally, chi-square distribution with k − 1 degrees of freedoms. It is defined as: 

( )2
1 1

ˆ_ k k
i i ii iQ esp w w

= =
= −∑ ∑                 (2.9) 

where 

1 1
ˆk k

i i ii iw w
= =

= ∑ ∑                     (2.10) 

The hypothesis 0 1 2 3: kH = = = =      of homogeneity of dispersion pa-
rameters is rejected whenever the statistic _Q esp  exceeds , 1kQα − , the upper 
5% quantile of a chi-square random variable with k − 1 degrees of freedom. 

2.2.2. Testing the Significance of the Common  
Dispersion Parameter: H0 : 0 =  

Here we develop a test statistic on the null hypothesis of absence of overdisper-
sion. For the case when iµ ’s are unknown, a uniformly most powerful test for 

0 : 0H =  (Poisson) versus 1 : 0H >  (GPD) cannot be obtained, however the 
locally powerful Neyman’s ( )C α  test can be constructed [18]. The log-likelihood 
function is given by 
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The locally asymptotically most powerful ( )C α  test is to reject 0H  for 
large values of ( ) 0=∂ ∂  . From (2.11): 
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Therefore, the locally asymptotically most powerful ( )C α  test is to reject 

0H  for large values of T , where 
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The statistic (2.13) is obtained from (2.12) by replacing each iµ  with root 

in  consistent estimator, ˆiµ . The simplest ˆiµ  is the maximum likelihood es-
timator .ˆi iyµ = . Moran [18] pointed out that the ( )C α  test statistic T is 
asymptotically normal. It can be easily shown that: 
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Under 0 : 0H = , (2.14) and (2.15) reduce respectively to 1
k

iiE µ
=

° = −∑  
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The hypothesis 0 : 0H =  is rejected whenever: 
( ) ( )20Q E vT −= = ° °  exceeds ,1Qα , the upper 5% quantile of a chi-square 

random variable with one degree of freedom. 

3. Testing Equality of Means 

Based on the one-way layout data considered in the previous section, we would 
like to test the null hypothesis 0 1: kH µ µ µ= = =  against aH : at least two 
of the i sµ′  are different, for all 0> . The log likelihood under the hypothesis 

aH : is given by (2.11), and will be denoted by a , the log likelihood under 0H  
will be denoted by 0  and is obtained by replacing ( )1,2, ,i i kµ µ= =   in 
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(2.11). Under aH , the maximum likelihood estimator of iµ  is 

.ˆi iyµ =  

And the maximum likelihood estimator â , of   is the non-negative root of 
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The maximum likelihood estimator of ô  and   under 0H  is the positive 
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Detailed discussion on the necessary and sufficient conditions that (3.1) and 
(3.2) to have a unique root is given in Consul and Shoukri [16]. 

Denoting the maximized log likelihood under aH  by aL , and that under 

0H  by 0L , the likelihood ratio test, which has an asymptotic distribution of 
chi-squared with ( )1k −  degree of freedom is: 
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As an alternative to the likelihood ratio test (3.3), we present the Neyman’s 
( )C α  statistic which has local optimal properties. Suppose that iµ  can be 

written as i iµ µ δ= +  with 0kδ = . Then testing the null hypothesis 

0 1 2: kH µ µ µ= = =  is equivalent to testing ( )0 :  1, 2,3, ,iH o i kδ = =  , 
where µ  and   are nuisance parameters. We reparametrize (11.2), and de-
note the resulting function by *
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Let τ̂  be any root-n consistent estimator of τ  under the null hypothesis. 
Moran [18] showed that the ( )C α  test is based on  

( ) ( ) ( ) ( )1 1 2 2ˆ ˆ ˆ ˆi i i i i iF τ φ τ γ τ γ τ= − ∆ − ∆ , where 1iγ  and 2iγ  are the partial regres-
sion coefficients of iφ  on 1∆  and 2∆  respectively. Define the following ma-
trices: 
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and 
2 *
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Here, we replace𝜏𝜏 by its estimator τ̂  in F, P, Q, and R, the ( )C α  test sta-
tistic is given by 

( ) 11F p QR Q F
−−′ ′−                      (3.5) 

The asymptotic distribution of the test statistic given in (3.5) will be that of a 
chi-square with k − 1 degrees of freedom. 

Now, there are two possible root-n consistent estimators of τ , under 0H : 
The first is the maximum likelihood estimator ( )0ˆ ˆ,yτ ′=  , which on substi-

tution we get ( ) ( )ˆ 0 1, 2j jτ∆ = = , and hence ( ) ( )ˆ ˆj iF τ φ τ= . Accordingly, (3.5) 
reduces to 
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The hypothesis of equality of population means is thus rejected whenever 2C  
exceeds , 1kQα − , the upper 5% quantile of a chi-square random variable with k − 
1 degrees of freedom. For more details we refer the reader to [12]. 

4. ANCOVA: The Generalized Poisson Regression 

It is well-known that ANOVA and regression are related techniques that are 
concerned with testing the differences in group means after adjusting for the 
confounding effects of potential risk factors and covariates. Since the MGPD is a 
member of the linear exponential family (for fixed  ) Shoukri and Mian [12] 
expressed the expectation iµ  of iy  as: 

( ) T
i iXη µ β=                         (4.1) 

In Equation (4.1), iX  is a set of measured ( )1P +  covariates, and a subset 
of theses covariates defines a set of indicators (dummy) variables to identify ca-
tegorical effects. The transformation ( )η ⋅  is a monotone, differentiable func-
tion named “the link function”. To estimate 0 1, , , pβ β β , and   we construct 
the log-link so that: 
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The first and second partial derivatives are given by: 
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Taking the expected value of the negative of the second partial derivatives we 
get the Fishers’ information matrix I, whose elements are: 
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From Consul and Shoukri [16] we get: 
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The asymptotic distributions of the regression estimators can be established 
using the results in [12]. 

Our approach to the data analysis when the main interest is comparing group 
means in the presence of potential risk factors and confounders is summarized 
in three steps. In the first step we use the MLE to estimate the regression para-
meters using Equation (4.2), without including the groups as independent varia-
ble. In the second step, we extract the residuals (E) of the generalized Poisson 
regression model, defines as: 

Observed dependent variable predicted value of the dependent variableE = −  
In the final step we test the normality and variance homogeneity of E. The-

reafter, we use nonparametric ANOVA with the residuals being the dependent 
variable, and the groups being the independent variables to complete the ANCOVA 
testing. 

5. Data Analyses 

Al-Gahtani et al. [19] analyzed COVID-19 case fatality data collected retrospec-
tively from the start of the of the epidemic to December 2-2020, the day the 
Pfizer vaccine was approved by the American Center for Disease Control (CDC). 
The data were collected from 120 countries grouped into 15 regions [19] as 
shown in Table 1. We will reanalyze the data such that: 

The response variable is the aggregate number of COVID-19 deaths which we 
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denote by “y”. We shall use different set of covariates, and these are: 
• Region: The factor variable which is the main effect. 
• The other covariates are: 

1) X1 =log (percentage of obese personsin a country reported in 2018) [21] 
[22]; 

2) X2 = log (population density) [23]; 
3) X3 = log (number of people with colorectal cancer in a country reported in 

2017) [24]; 
4) X4 = log (Chronic Kidney Disease—case fatality in a country as reported in 

2017) [20]. 
In Figure 1 we show the histogram of (y), the aggregate of COVID-19 deaths 

during the study period. The distribution is positively skewed with variance 
much larger than the mean. 

Direct calculations from the summary statistics given in Table 2 give: 
_ 0.00004Q esp = , and the corresponding p-value = 0.999. Therefore, the 

hypothesis of homogeneity of dispersion parameters is supported by the data. 
Moreover, ( ) 0Q =  is quite large and the corresponding p-value = 0.00001.  

 
Table 1. Adaptedtable: Countries and the corresponding Regional classification as given in  
https://doi.org/10.1016/s0140-6736(20)30045-3 [20]. In the first column we have the countries, in the second column we have 
Region or group name followed by the number of countries within the group. In the last column we have Region code. 

Countries Region name Region Code 

Peru, Ecuador, Bolivia Andean. Latin (3) 10 

Kazakhstan, Georgia, Armenia, Azerbaijan, Kyrgyzstan, Uzbekistan, Tajikistan Central Asia (7) 2 

Czechia, Romania, Hungary, Serbia, Bulgaria, Croatia, Slovakia, Bosnia, Slovenia,  
North-Macedonia, Albania, Montenegro 

Central Europe (12) 5 

Brazil, Columbia, Mexico, Panama, Costa Rica, Guatemala, Honduras,  
Venezuela Paraguay, El-Salvador 

Central Latin America (10) 11 

Dominican Republic, Puerto Rico, Jamaica Caribbean (3) 9 

Ethiopia, Kenya, Uganda, Zambia, Madagascar. Mozambique, Angola, French Guinea CESSA (8) 13 

Indonesia, Philippine, China, Myanmar, Malaysia, Sri Lanka, French Polynesia, Maldives East Asia (8) 1 

Russia, Poland, Ukraine Belarus, Lithuania, Latvia, Estonia East Europe (7) 6 

Japan, Singapore, Republic Korea, Australia HIAP (4) 4 

Iran, Iraq, Turkey, Morocco, Saudi Arabia, Israel, Jordan, United Arab, Kuwait, Qatar, Lebanon,  
Oman, Egypt, Occupied Palestine, Tunisia, Bahrain, Algeria, Libya, Afghanistan, Sudan 

MENA (20) 12 

India, Bangladesh, Pakistan, Nepal South Asia (4) 3 

Chile, Argentina, Uruguay South Latin America (3) 8 

South Africa, Namibia, Zimbabwe SSSA (3) 15 

USA, France, Spain, UK, Italy, Germany, Belgium, Netherland Canada, Switzerland,  
Portugal, Austria, Sweden, Greece, Denmark, Ireland, Norway, Luxemburg, Finland, Cyprus 

West Europe and  
North America (20) 

7 

Mali, Nigeria, Ghana, Cameroon, Ivory Coast Senegal, Guinea, Cape Verde WSSA (8) 14 

CSSA = Central Sub-Saharan-Africa; MENA = Middle East and North Africa; HIAP = High Income Asian Pacific; WSSA = Western Sub-Saharan-Africa; 
SSSA = Southern Sub-Saharan Africa. 
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Figure 1. Histogram COVID-19 deaths (y). It is skewed to the right showing clear over 
dispersion in the data. 

 
Table 2. Summary measures of COVID-19 deaths: group sizes (n), means (m), standard 
deviation (s) and the estimates of the dispersion parameter (eps) per group. 

Region n m s eps 

1 An. Latin 

2 C. Asia 

3 C. EUROP 

4 C. Latin 

5 Caribbean 

6 CESSA 

7 E. ASIA 

8 E. Europe 

9 HIAP 

10 MENA 

11 S. Asia 

12 S. Latin 

13 SSSA 

14 W. Eur 

15 WSSA 

3 

7 

11 

10 

3 

7 

6 

7 

4 

19 

4 

2 

3 

20 

7 

19,496 

1350 

3515 

33,158 

976 

640 

5452 

10,488 

920 

5986 

38,606 

27,080 

7358 

28,061 

692 

14,448 

836 

3577 

59,252 

1177 

658 

6495 

15,213 

934 

11,027 

66,403 

16,476 

12,372 

59,609 

806 

0.005 

0.016 

0.018 

0.01 

0.037 

0.039 

0.016 

0.014 

0.032 

0.024 

0.009 

0.004 

0.019 

0.013 

0.043 

 
Therefore, the hypotheses that the common dispersion is not significantly dif-

ferent from zero is not supported by the data. The C2-statistic is quite large as 
well, and the corresponding p-value is near zero, therefore the hypothesis of 
equality of mean counts in all regions (aggregate COVID-19 deaths) is also not 
supported by the data. 

We shall write a function using the R-program for the estimation of the re-
gression parameters. The iteration process requires staring points. We obtain the 
staring points by first fitting the classical Poisson regression, which is done using 
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the following code: 

out1 = GLM (y~x1 + x2 + x3 + x4, data = data2, family = Poisson). 

Having obtained the parameter estimates from the Poisson regression, we use 
them to start the iteration process and obtain final estimates as shown in the 
Appendix. 

The MGPD regression results are summarized in Table 3. 
The correlation between the observed and predicted COVID-19 death counts 

is (0.758). 
Figure 2 gives the Q-Q plot of the quantiles of model residuals exhibiting 

close agreement among with the quantiles of the standard normal distribution. 
To complete the ANCOVA testing we use theKruskal-Wallis test whereby re-

siduals of the MGPD regression model are used as dependent variables and the 
“Regions”, or groups as independent variables. The results are summarized as 
follows: 

Kruskal-Wallis chi-squared = 14.936, p-value = 0.1344. 
Therefore, after adjusting for the covariates, there is not sufficient evidence to  

 
Table 3. Maximum likelihood estimation of the MGPD regression using R. 

Parameter Estimate SE Z p value 

1-Intercept 

2-X1 

3-X2 

4-X3 

5-X4 

6-𝟄𝟄 

−0.299 

0.659 

0.489 

0.425 

−0.385 

0.028 

1.138 

0.186 

0.131 

0.107 

0.090 

0.002 

−0.262 

3.545 

3.729 

3.400 

−4.280 

13.537 

0.7900 

0.0004 

0.0002 

0.0002 

0.00002 

0.000001 

 

 
Figure 2. Plot of the quantiles of the residuals of the MGPD regression model against the 
quantiles of the standard normal distribution. 
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reject the hypothesis of equality of mean counts in COVID-19 deaths among the 
“Regions”. 

6. Nonparametric Regression Modeling:  
Generalized Additive Models 

The Generalized Additive Models (GAM) are recent developments that are be-
coming popular as modeling techniques. It is nonparametric in nature and, even 
though less powerful, it is quite robust against departure from the assumptions 
required by classical GLM regression models. The GAM allow us to include 
non-linear smoothers into the modeling strategy. In mathematical terms GAM 
solve the following equation: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4 5 5ig f x f x f x f x f xµ + += + +         (6.1) 

The ( )j jf x  are smooth functions to be estimated. Equation (6.1) seems com-
plex, but it is very simple to understand. The first thing to notice is that with 
GAM we are not necessarily estimating the response directly, i.e. we are not 
modelling y. In fact, as with GLM we have the possibility to use link functions to 
model non-normal response variables (and thus perform Poisson or logistic re-
gression) [14]. Therefore, the term ( )g µ  is simply the transformation of y 
needed to “linearize” the model. When we are dealing with a normally distri-
buted response this term is simply replaced by y. The second part of the equa-
tion, where we have two terms: the parametric and the non-parametric part. In 
GAM we can include all the parametric terms we can include in Linear Model or 
GLM, for example linear or polynomial terms. The second part is the non-pa- 
rametric smoother that will be automatically fitted, and it is the key point of 
GAMs. A complete and lucid account of the GAM theory can be found in [25] 
[26] [27]. 

We fitted the GAM to the data using the R-package “GAM”, and the next two 
lines are the needed code: 

library(gam); 
agam=gam(y~Region+x1+x2+x3+x4,data=data2). 
Call: gam(formula = y ~ code + x1 + x2 + x3 + x4, data = data2). 
The following results are obtained from the GAM fitting to the data: 
1) Null Deviance: 135512150629 on 112 degrees of freedom; 
2) Residual Deviance: 74451674616 on 96 degrees of freedom. 
From which: The correlation between observed counts and predicted counts 

is: (1-74451674616/135512150629)1/2 = 0.671. 
The GAM results are shown in Table 4, and the Q-Q plot of the model resi-

duals is given in Figure 3, showing that the model residuals are not as close to 
normality as the residuals of the MGPD regression model. 

7. Discussion 

In this paper we demonstrated the use of the MGPD as a model for the ANCOVA. 
We used a two-steps approach. In the first step we used the regression models to  
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Table 4. The results of fitting the GAM: ANOVA for Parametric Effects. 

Source DF Sum Sq Mean Sq F value Pr. (>F.) 

Region 

x1 

x2 

x3 

x4 

Residuals 

12 

1 

1 

1 

1 

96 

1.5856e+10 

1.9335e+09 

2.3000e+10 

1.1518e+10 

8.7527e+09 

7.4452e+10 

1.3213e+09 

1.9335e+09 

2.3000e+10 

1.1518e+10 

8.7527e+09 

7.7554e+08 

1.7038 

2.4932 

29.6566 

14.8522 

11.2859 

 

0.078 

0.118 

3.963e−07*** 

0.0002 

0.001 

 

***significant at level of significance less than 0.00001. 
 

 
Figure 3. Plot of the quantiles of the residuals of the GAM nonparametric regression 
model against the quantiles of the standard normal distribution. 

 
assess the influence of possible confounders and covariates on the outcome of 
interest. Thereafter we extracted the model residuals and used these residuals as 
a dependent variable of a nonparametric ANOVA, with the groups being the 
independent predictors. We note that while there was a significant difference 
among the group means in the univariate analysis, such difference was not sig-
nificant in the second step of the ANCOVA. We note that the MGPD regression 
model showed high correlation (0.758) between the observed counts and the 
model based predicted counts, indicative of a good fit by the model to the given 
data. On using the Q-Q plot, model residuals are shown to have close agreement 
to the empirical quantiles of the standard normal distribution. This shows that 
the model is quite reliable as a predictive tool, and that the distribution of the es-
timated regression parameters is that of a multivariate normal. 

For the sake of comparison, we fitted the data using the GAM, a nonparame-
tric regression approach. This approach deals with the covariates as factors. The 
GAM model showed that after adjusting for the covariates within the same 
model, there are no significant differences among regions. These findings are in 
agreement with those based on the MGPD regression. The GAM did not pro-
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duce estimate for the dispersion parameter 𝟄𝟄. The measure of goodness of fit of 
the GAM was (0.671), which is much lower than that of the MGPD. The MGPD 
model has several advantages when compared to the GAM. First, The GAM 
cannot be used as a predictive tool, while the MGPD model can be used to pre-
dict the mean of the response variable. Second, the residuals of the MGPD re-
gression model have a distribution that is almost normal. This emphasizes the 
reliability of the likelihood based statistical estimation of the model parameters. 
Finally, our two-steps approach to data fitting makes helps avoiding both over-
fitting and possible multicollinearity. 
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Appendix A 

R-Code fitting the Generalized Poisson using the method of maximum like-
lihood. 
###Notations: bi are the regression parameters, mu is the mean function, “n” is 
the number of observations “ll” denotes the ###log-likelihood function, eta is the 
linear predictor ### 
llik= function(y,par){ 
b0=par[1] 
b1=par[2] 
b2=par[3] 
b3=par[4] 
b4=par[5] 
k=par[6] 
n=length(y) 
eta=b0+b1*x1+b2*x2+b3*x3+b4*x4 
mu=exp(eta) 
ll= sum(y*log(mu/(1+(k*mu))))+sum((y-1)*log(1+(k*y)) 

+((-mu*(1+(k*y)))/ (1+(k*mu)))-lgamma(y+1)) 
 
return(-ll) 
} 
res=optim(par=c(1.4,.84,.07,.95,-.37,.1),llik,y=y,method=“BFGS”,hessian=T) 
theta=res$par 
theta 
#CALCULATING THE STANDARD ERRORS OF MLE 
out2=nlm(llik,theta,y=y,hessian=TRUE) 
summary(out2) 
plot(data2$y,resid(out2)) 
data_new=data.rame(data2$y,resid(out2)) 
fish=out2$hessian 
solve(fish) 
element=diag((solve(fish))) 
se=sqrt(element) 
se 
z=theta/se 
out.GMPD=data.frame(theta,se,z) 
out.GMPD 
#### FINAL ESTIMATES -0.30007804 0.65884589 0.48926214 0.42536091 
-0.38469265 
data2$y_hat=exp(-.3+.66*data2$x1+.5*data2$x2+.425*data2$x3-.384*data2$x4) 
data2$y 
data2_error=data.frame(data2$y,data2$y_hat) 
cor(data2$y,data2$y_hat) #####0.76 
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data2_error=data2$y-data2$y_hat 
data2$response=sqrt((data2_error)^(1/3)) 
qqnorm(data2$response) 
### SHAPITO WILK TEST OF NORMALITY#### 
shapiro.test(data2$response) 
leveneTest(data2$response~data2$Region) 
aov_result=aov(data2$response~data2$Region) 
####ANOVA ON THE RESIDUALS WITH REGION BEING  
THE INDEPENDENT VARIABLEUSING KRUSKAL_WALLIS#### 
levels(data2$Region) 
aov_result=aov(data2$response~data2$Region) 
summary(aov_result) 
boxplot(data2_error~data2$Region,xlab=“Region”,ylab=“GPD  
Residuals”,main=“CODID-19 Deaths”) 
kruskal_result=kruskal.test(data2$response~data2$Region) 
 
###END OF CODE####. 
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