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Abstract 
This paper introduces the class of seasonal fractionally integrated autoregres-
sive moving average-generalized conditional heteroskedastisticty (SARFIMA- 
GARCH) models, with level shift type intervention that are capable of cap-
turing simultaneously four key features of time series: seasonality, long range 
dependence, volatility and level shift. The main focus is on modeling seasonal 
level shift (SLS) in fractionally integrated and volatile processes. A natural 
extension of the seasonal level shift detection test of the mean for a realization 
of time series satisfying SLS-SARFIMA and SLS-GARCH models was derived. 
Test statistics that are useful to examine if seasonal level shift in an 
SARFIMA-GARCH model is statistically plausible were established. Estima-
tion of SLS-SARFIMA and SLS-GARCH parameters was also considered. 
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1. Introduction 

The phenomenon of long memory or long range dependence in time series 
processes has been of interest in time series research. A popular way to analyze a 
long memory time series is to use seasonal autoregressive fractionally integrated 
moving average (SARFIMA) processes introduced by [1] and [2]. The works of 
[1] and [2] assume that the conditional variance of the time series is constant 
over time. However, non constant variance in non-linear time series is a chal-
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lenging modelling exercise, considered among other things by [3]. In particular, 
the stylized fact that the volatility of financial time series is non constant has 
been long recognized in literature, see for example [4] [5] and [6]. 

The methodology for modelling time series with long memory behavior has 
been extended to long memory time series with time varying conditional va-
riance, see for instance, [7] who developed the ARFIMA model with generalized 
autoregressive conditional heteroskedasticity (GARCH) type innovations, and 
[8] examine the daily average PM10 concentration using a seasonal ARFIMA 
model with GARCH errors. Tong [9] analyzed the nonlinear time series using 
GARCH models and [10] used GARCH models for testing market efficiency. 
These models do not capture level shifts both in mean and variance, in this pa-
per we introduce a new class of SARFIMA-GARCH models with seasonal level 
shift intervention in mean and volatility. This approach allows us to model mean 
and volatility seasonal level shifts in an SARFIMA-GARCH model which is often 
observed in financial or economics time series.  

This article introduces detection of a mean and volatility level shifts innovation 
in an ARFIMA-GARCH model. The works of [11] first applied ARFIMA-GARCH 
models to price indices then [7] derived conditions for asymptotic normality of 
the approximate (Gaussian) maximum likelihood (ML) estimator in the 
ARFIMA-GARCH model. This paper also extends parameter estimation for an 
SARFIMA-GARCH model to case with seasonal level shift which we will denote 
Seasonal Level Shift SARFIMA (SLS-ARFIMA) and Seasonal Level Shift GARCH 
(SLS-GARCH) using quasi-maximum likelihood estimation.  

The first concern of this paper is how one would formally address modeling 
mean and volatility seasonal level shifts in an SARFIMA-GARCH. The second 
concern is derivation of test statistics that are useful to examine presence of sea-
sonal level shifts in mean and volatility for an SARFIMA-GARCH model. The 
layout of the paper is organised as follows. Section 2 reviews some theoretical 
results of SARFIMA-GARCH and intervention. In Section 3, we introduce the 
class of SLS-ARFIMA-SLS-GARCH models. Section 4 deals with parameter es-
timation in SLS-ARFIMA and SLS-GARCH models. Section 5 is dedicated to the 
proposed procedure of level shift detection in SARFIMA-GARCH models. The 
last section concludes with the main findings and limitations. Common acro-
nyms used in this paper are given in Table 1. 

 
Table 1. Common acronyms used in this paper. 

Acronym Explanation 

AO Additive outlier 

LS Level shift 

TC Temporary change 

IO Innovative outlier 

SLS Seasonal level shift 

ARMA Autoregressive moving average 
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Continued 

ARFIMA Autoregressive fractionally integrated moving average 

SARFIMA Seasonal autoregressive fractionally integrated moving average 

GARCH Generalized autoregressive conditional heteroskedasticity 

LS-ARFIMA Level shift-autoregressive fractionally integrated moving average 

LS-GARCH Level shift-generalized autoregressive conditional heteroskedasticity 

SLS-ARFIMA Seasonal level shift-autoregressive fractionally integrated moving average 

SLS-GARCH Seasonal level shift-generalized autoregressive conditional heteroskedasticity 

2. SARFIMA-GARCH Models 

This section presents review of the ARFIMA models, SARFIMA models, 
GARCH models and the SARFIMA-GARCH models. The variance of GARCH 
model and intervention in ARFIMA models is also presented. 

2.1. ARFIMA Process 

Time series analysis has turned attention to the studies with long memory or 
long-range dependence characteristics. The ( )ARFIMA , ,p d q  process, first 
introduced by [1] and [2], present this property when the differencing parameter 
d is in the interval (0, 0.5). This feature is reflected by the hyperbolic decay of its 
autocorrelation function or by the unboundedness of its spectral density func-
tion, while in the ARMA model, dependency between observations decays at a 
geometric rate. 

Montanari et al. [12] introduced a special form of the generalized ARFIMA 
model considered by [13]. This formulation is able to reproduce short-and long 
memory periodicity in the autocorrelation function of the process. Using the [14] 
notation, the general form of the ARFIMA model is defined as follows: 

Let { }t t
x

∈  be a stochastic process, then { }t t
x

∈  is a zero mean  
( )ARFIMA , ,p d q  process given by the expression  

 ( )( ) ( )1 , ford
t tB B x B tφ θ ε− = ∈                   (1) 

where { }t t
ε

∈  is a white noise process with zero mean and variance ( )2 2
tεσ ε=  , 

B is the backward-shift operator, that is, k
t t kB x x −=  and ( )1 dB−  is the non 

seasonal difference, ( )φ ⋅  and ( )θ ⋅  are the non-seasonal polynomials of de-
grees p and q, respectively, defined by:  

 ( ) ( ) ( ) ( )
0 0

, ,
p q

i j
i j

i j
B B B Bφ φ θ θ

= =

= − = −∑ ∑                (2) 

where , 1i i pφ ≤ ≤ , and , 1j j qθ ≤ ≤  are constants and 0 01φ θ= − = .  
The difference operator ( )1 dB−  is defined by means of the binomial expan-

sion: 

( ) ( )
0

1 ,d j

j

d
B B

j

∞

=

 
− = − 

 
∑                       (3) 

where;  
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( )
( ) ( )

1
1 1

dd
j j d j

Γ + 
=  Γ + Γ + − 

 and ( )Γ ⋅  is the well known gamma function. 

The ARFIMA model is said to be stationary when 0.5 0.5d− < < . The model 
becomes nonstationary when 0.5d ≥  and stationary but non invertible when 

0.5d ≤ − . The ARFIMA model represents a short memory if 0d =  and a unit 
root process is shown when 1d = . Furthermore, the model has a positive de-
pendence among distance observations or the so called long memory process if 
0 0.5d< < ; and it also has an anti-persistent property or has an intermediate 
memory if 0.5 0d− < < . 

2.2. ( ) ( )p d q P D Q sSARFIMA , , , ,×  Process 

The seasonal autoregressive fractionally integrated moving average process, de-
noted hereafter by ( ) ( )SARFIMA , , , ,p d q P D Q s× , is an extension of the long 
range dependence in the mean ( )ARFIMA , ,p d q  process, proposed by [1] and 
[2]. The ( ) ( )SARFIMA , , , ,p d q P D Q s×  process describes time series with 
long memory or long range dependence or persistent periodical behavior at fi-
nite number of spectrum frequencies. 

A special form of the generalized ARFIMA model was considered by [13]. 
This formulation is able to reproduce short and long memory periodicity in the 
autocorrelation function of the process. Using the [14] notation, the general 
form of the SARFIMA model is defined below: 

Let { }t t
x

∈  be a stochastic process, then { }t t
x

∈  is a zero mean  
( ) ( )SARFIMA , , , ,p d q P D Q s×  process given by the expression  

 ( ) ( )( ) ( ) ( ) ( )1 1 , for
Dds s s

t tB B B B x B B tφ θ εΦ − − = Θ ∈          (4) 

where s∈  is the seasonal period, B is the backward-shift operator, that is, 
sk

t t skB x x −= , ( )1
DsB−  is the seasonal difference operator, ( )Φ ⋅  and ( )Θ ⋅  

are the polynomials of degrees P and Q, respectively, defined by: 

( ) ( ) ( ) ( )
0 0

,
QP

s si s sj
i j

i j
B B B B

= =

Φ = −Φ Θ = −Θ∑ ∑                (5) 

where , 1i i PΦ ≤ ≤  and , 1j j QΘ ≤ ≤  are constants and 0 01Φ = − = Θ .  
The seasonal difference operator ( )1

DsB− , with seasonality s∈ , for all 
1D > − , is defined by means of the binomial expansion;  

 ( ) ( )
0

1 ,
D js s

j

D
B B

j

∞

=

 
− = − 

 
∑                        (6) 

where;  

 ( )
( ) ( )

1
1 1

DD
j j D j

Γ + 
=  Γ + Γ + − 

                      (7) 

A compact form of Equation (1) and Equation (4) is given by: 

( ) ( ) ( ) ( ) , fors s
t tB B x B B tφ θ εΦ ∇ = Θ ∈d               (8) 
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In Equation (8), the operator ∇d  is defined by 

( ) ( )1 1
Dd sB B∇ = − −d                        (9) 

where ( ) 2,d D= ∈d   is the memory vector parameter, d and D are the frac-
tionally parameters at non seasonal and seasonal frequencies, respectively. The 
fractional filters are: 

( ) ( )
0

1 ,   1, and ,
l jk k

j

l
B B k s l d D

j

∞

=

 
− = − = = 

 
∑            (10) 

where; 

( )
( ) ( )

1
1 1

ll
j j l j

Γ + 
=  Γ + Γ + − 

                    (11) 

Suppose in Equation (8), ( ) ( ) 0sB Bφ Φ =  and ( ) ( ) 0sB Bθ Θ =  have no 
common zeros. Let also 0.5d D+ <  and 0.5D < , the process { }t t

x
∈  has 

spectral density function is given by;  

 ( )
( ) ( )
( ) ( )

2 2
2 22

2 2

e e
2sin 2sin ,

2 2 2e e

i i s d D

x
i i s

sf
λ λ

ε

λ λ

θσ λ λλ
φ

− − − −

− −

Θ       =             Φπ
   (12) 

where 0 λ< ≤ π . 
Note that according to [15]:  
1) The processs { }t t

x
∈  is stationary if 0.5d D+ < , 0.5D <  and  

( ) ( ) 0sB Bφ Φ ≠ , for 1B ≤ .  
2) The stationary process { }t t

x
∈  has a long memory property if  

0 0.5d D< + < , 0 0.5D< <  and ( ) ( ) 0sB Bφ Φ ≠ , for 1B ≤ .  
3) The stationary process { }t t

x
∈  has an intermediate property if  

0.5 0d D− < + < , 0.5 0D− < <  and ( ) ( ) 0sB Bφ Φ ≠ , for 1B ≤ .  
For convenience, we introduce the notation { }| 0k k≥ = ∈ ≥  ,  

{ }| 0k k≤ = ∈ ≤   and { }1, , 1A s= − ⊂  . 
Theorem 2.1. Let { }t t

x
∈  be the ( )( )0,SARF , ,IMA 0 0, 0d D s  process giv-

en by expression:  

 ( ) ( )1 1
Dd s

t tB B x ε− − =                        (13) 

with zero mean, s∈  as the seasonal period. Then the process { }t t
x

∈  has 
autocovariance function of order h, h ≥∈ , given by 

( )
( ) ( )2 , if , ;

0, if , ,

z y

x

s h s h sl l
h

h sl A

ε
ν

σ γ ν γ ν
γ

ζ ζ
≥

≥
∈

 − = ∈= 
 = + ∈

∑



       (14) 

where 
1) The process { }t t

y
∈  is an ( )ARFIMA 0, ,0d  with autocovariance func-

tion of order h, h ≥∈ , given by  

 ( ) ( ) ( )
( ) ( )

1 1 2
1 1

h

y

d
h

h d h d
γ

− Γ −
=
Γ − + Γ − −

                 (15) 
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2) The process { }t t
z

∈  is an ( )SARFIMA 0, ,0 sD  with autocovariance func-
tion of order ν , ν ≥∈ , given by  

 ( )
( ) ( )

( ) ( ) ( )
1 1 2

, if 0
1 1

0, if

x
z

D
s D D

A

ν

γ ν ξ
γ ν ξ ν ν

ξ

 − Γ −
= =

+ = Γ − + Γ − −
 ∈

      (16) 

For proof of Theorem (2.1) see [15] Theorem 2.1. 
Theorem 2.2. Let { }t t

x
∈  be a causal and invertible  

( )( )SARFIMA , , , ,p d q P D Q s  process given by the expression:  

 ( ) ( )( ) ( ) ( ) ( )1 1 for
Dds s s

t tB B B B x B B tφ θ εΦ − − = Θ ∈      (17) 

with zero mean, s∈  as the seasonal period. Suppose ( ) ( ) 0sB Bφ Φ =  and 
( ) ( ) 0sB Bθ Θ =  have no common zeros. For 0.5d D+ < , 0.5D < , then the 

process { }t t
x

∈  has autocovariance function of order h, h ≥∈ , given by 

( )
( ) ( )2 , if , ;

0, if , ,

z y

x

s h s h sl l
h

h sl A

ε
ν

σ γ ν γ ν
γ

ζ ζ
≥

≥
∈

 − = ∈= 
 = + ∈

∑



        (18) 

where 
1) the process { }t t

y
∈  is an ( )ARFIMA , ,p d q  with autocovariance func-

tion given by ( )yγ ⋅ . 
2) the process { }t t

z
∈  is an ( )SARFIMA , , sP D Q  with autocovariance 

function given by ( )zγ ⋅ .  
For proof of Theorem (2.2) see [15] Theorem 2.2. 

2.3. The GARCH(m, r) Model 

The ( )GARCH ,m r  model can be obtained from Equation (1) by letting
[ ]1| 0t tFε − =  and the conditional variance, 2

1|t t tF hε −  =   where 1tF −  is 
the σ  field generated by the past information { }1 2, ,t tε ε− −  . Let also 

( )1| ~ 0,t t tF N hε −  and 

t t tz hε =                            (19) 

where tz  is normal distributed with mean 0 and variance 1. [4] introduced the 
( )GARCH ,m r  model which defines the conditional variance equation as fol-

lows; 

2
0

1 1

r m

t i t i i t i
i i

h hω α ε β− −
= =

= + +∑ ∑                    (20) 

where 0 0ω > , 1 1, , , , , 0r mα α β β ≥  , r and m are positive integer. Note that 
the GARCH model defined by (20) can be replaced by other conditional hete-
roscedastic models.  

2.4. The General SARFIMA-GARCH Model 

Let the ( ) ( ) ( )SARFIMA , , , , -GARCH ,p d q P D Q s m r  model be the discrete 
time series model of { }ty  given by the following equation. 
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( ) ( )( ) ( ) ( ) ( )1 1
0 1 1

Dds s s
t ty B B B B B Bµ φ θ ε

−−− −= + Φ − − Θ  

( )1,   | ~ 0,t t t t t tz h F N hε ε −=  

 2
0

1 1

r m

t i t i i t i
i i

h hω α ε β− −
= =

= + +∑ ∑                    (21) 

2.5. Variance of Variance in the Standard GARCH(m, r) Model 

By rearranging the conditional variance Equation (20) for a GARCH(1,1) we 
obtain: 

( ) ( )2
0 1 1 1 1 1 1

0 1 1 1 1

t t t t

t t t

h h h

h h

ω α β α ε

ω γ α η
− − −

− − −

= + + + −

= + +
             (22) 

where 1 1γ α β= +  and 2 1t tzη = − . [16] have shown that the variance of va-
riance is given by: 

( ) [ ] ( )2 2 2
1 1 1 1 11t t t z tVar h h hα η κ α− − −= = −                (23) 

where zκ  denotes the conditional kurtosis of tz , which we assume to be finite 
constant. If the distribution of tz  is standard normal, then 1 2zκ − = . 

[16] further rearranged the terms in Equation (22), the conditional variance 
equation becomes:  

 
( )1 1 1 1 1

0 1 1 1 1

t t t t t

t t t

h h h h

h h

ϕ τ α η

ω γ α η
− − − −

− − −

− = − +

= + +
                (24) 

where 1ϕ γ= −  determines the speed at which the conditional variance reverts 
to its long run mean τ , that is, ( ) ( ) 1

0 1τ ω γ −= −  and its corresponding va-
riance becomes: 

( ) ( ) 2
1 1 11t t z tVar h h hκ α− −− = −                  (25) 

2.6. Intervention in ARIMA Models 

Traditional time series analysis has considered four types of interventions, see 
for instance, [17] [18] [19] and [20]. The four types of interventions are: 

1) Additive Outlier (AO): represents an isolated spike. 
2) Level Shift (LS): represents a step function. 
3) Transitory or Temporary Change (TC): represents a spike that takes a few 

periods to disappear. 
4) Innovative Outlier (IO): represents effects that depend on the ARIMA 

model for the observed series.  
According to [21], the effect of an AO, a LS, or a TC on an observed series is 

independent of the ARIMA model whereas the effect of an IO on an observed 
series consist of an initial shock that propagates in the subsequent observations 
with the weights of the ARIMA model. 

Let ty  be a time series that can be described with the  
( )( )SARIMA , , , ,p d q P D Q s  model:  
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( ) ( )( ) ( ) ( ) ( ) ( )01 1 , for 1, ,
Dds s s

t tB B B B y B B t nφ µ θ εΦ − − − = Θ =    (26) 

and let tx  be the contaminated series containing k outliers represented by: 

( )
1

j
k

t t j j t
j

x y G B Iτµ
=

= +∑                      (27) 

where jµ  is the initial impact of the outlier at time jt τ= ; j
tIτ  is an indicator 

variable such that it is 1 for jt τ=  and 0 otherwise; and ( )jG B  determines 
the dynamics of the intervention occurring at time jt τ=  according to the fol-
lowing schemes: 

1) AO: ( ) 1jG B = .  
2) LS: ( ) ( ) 11jG B B −= − .  
3) TC: ( ) ( ) 11 , 0 1jG B Bδ δ−= − < < .  
4) IO: ( ) ( ) ( )( ) ( ) ( ) ( )1 1 1 1

Dds s s
jG B B B B B B Bφ θ

−−− −= Φ − − Θ .  
[21] came up with a new intervention type, Seasonal Level Shift (SLS), that 

can describe a perturbation mostly related to the seasonal component. Sea-
sonal level shifts are the interventions that affect only certain quarters or 
months of a year. The SLS is a special kind of level shift that occurs in 

( )( )SARIMA , , , ,p d q P D Q s  at some point t τ=  in time and reoccur regu-
larly every year at same season say s and its effect carries up to subsequent sea-
sons. The basic model with SLS suggested by [21] is given by 

( ) ( ) ( ) 1
 where 1s s s

t t tx y G B I G B Bτµ
−

= + = −            (28) 

However ( ) ( ) 1
1s sG B B

−
= −  causes an impact on trend which can only be re-

moved by defining dynamic weights as 

( ) ( )
1 1

11
s

sG B
s BB

= −
−−

                      (29) 

The dynamic impact was normalized as suggested by [22]: 

( ) ( ) ( )

( ) ( )

( ) ( )

1 1

2 3 2 3

1 1

11 1
1

11 1
1

1 1 1
1 1

s s

s s s

s s

sG B B B
s s

s B B B B B B
s s

s sB B B B
s s

− −

− −

 = − − − −  
 = + + + + − + + + + −  

 = − + − − − − 

      (30) 

Thus model (28) becomes 

( )
( ) ( )

1 11 1 1
1 1

s
t t t

s s
t t

x y G B I

s sy B B B B I
s s

τ

τ

µ

µ
− −

= +

 = + − + − − − − 

        (31) 

Equation (31) is the observed series indicating series that the occurrence of SLS 
affects the time series for several seasons at same quarters or month with mag-
nitude of outlier µ . The outlier is introduced in the model by generating a va-
riable: 
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( )

0 for
1 at

1 at 1, 2, , 1
1

1, 2,

j
s

t
j j j

t
t s

G B I
t s s s s

s
j

τ

τ
τ

τ τ τ

<
 = += −

= + + + + + + − −
=





    (32) 

However in this research, for a SLS intervention at period t τ= , we shall stick 
to the simple specification model (28). 

3. SARFIMA-GARCH Models with Level Shift 

This section presents a natural extension of the SARFIMA-GARCH models to a 
case with level shift. We start with a standard shift in the mean, then a level shift 
in seasonality. We will also consider level shift in the volatility with its corres-
ponding shift in seasonality. 

3.1. The SARFIMA Model with Level Shift  

The ( )( )SARFIMA , , , ,p d q P D Q s  model is written as 

( ) ( )( ) ( ) ( ) ( ) ( )01 1 ,  for 1, ,
Dds s s

t tB B B B y B B t nφ µ θ εΦ − − − = Θ =   (33) 

where ty  is the time series at time t, 0µ  is the unconditional mean of the 
process. We assume the noise process tε  to be Gaussian, with expectation zero 
and variance 2

εσ . 
To allow for a mean level shift, after time t τ=  of the data, we write the sum 

of an unobserved SARFIMA process and the term for the mean level shift which 
we will denote as ( )( )LS-SARFIMA , , , ,p d q P D Q s  

( ) 1
11 1t t tx y B Iτµ −= + −                       (34) 

( )11 11t ty G B Iτµ= +                        (35) 

where tx  denotes the observed contaminated series; ty  follows the SARFIMA 
process; tIτ  is an indicator variable taking values 1 for t τ= , and 0 otherwise. 
The parameter 11µ  indicates the size of the mean level shift at time t τ= ; 

( )11G B  determines the dynamics of the intervention occurring at time t τ= . 
The mean level shift is an abrupt but permanent shift by 11µ  in the series 
caused by an intervention. 

The extension of (34) to k level shifts is straightforward. We define 1 jµ  as 
the th

jτ  shift in level, compared to the previous level, where 1, ,j k=  . When 
we allow k level changes at pre-specified time jt τ= , we can extend Equation 
(34) and Equation (35) to 

( ) 1
1

1
1 j

k

t t j t
j

x y B Iτµ −

=

= + −∑                   (36) 

( )1 1
1

j
k

t j j t
j

y G B Iτµ
=

= +∑                    (37) 

The component ( ) 1
11 1 jk

j tj B Iτµ −

=
−∑  allows the intercept of the SARFIMA 

https://doi.org/10.4236/ojs.2020.105047


L. Dhliwayo et al. 
 

 

DOI: 10.4236/ojs.2020.105047 819 Open Journal of Statistics 
 

model to fluctuate over time between 0µ  and 0 11
k

jjµ µ
=

+∑ . 

3.2. The SARFIMA Model with Seasonal Level Shift  

Seasonal Level Shift in SARFIMA models denoted as SLS-SARFIMA type inter-
vention display seasonal features in its pattern. Many economic series display 
breaks and anomalies within the previous restrictions. To illustrate the argument, 
the SLS is presented in Figure 1. 

This paper covers the methodologically and computationally less complex ap-
proach by extending intervention detection procedures to cover shifts in the 
seasonal component in fractionally integrated SARFIMA models. The Seasonal 
Level Shift (SLS) intervention has an effect on the trend given by the step func-
tion of Figure 2(a), and an effect on the seasonal component shown in Figure 
2(b). 

A Seasonal Level Shift intervention at period t τ=  would affect the series ty  
and is represented by model (38): 
 

 
Figure 1. Seasonal level shift effect. 
 

 
Figure 2. Seasonal level shift effect: (a) effects of a SLS on the trend cycle component. (b) 
effects of a SLS on the seasonal component. 
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( ) ( ) ( ) 1

21 21 21where 1s s s
t t tx G B I y G B Bτµ

−
= + = −           (38) 

Assuming the observed series contains k seasonal level shifts at time jt τ=  for 
1, ,j k=  , their combined effect can be expressed in general form as: 

( ) ( ) ( ) 1

2 2 2
1

where 1j
k

s s s
t j j t t j

j
x G B I y G B Bτµ

−

=

= + = −∑        (39) 

The component ( ) 1

21 1 jk s
j tj B Iτµ

−

=
−∑  allows the intercept of the SARFIMA 

model to fluctuate over time between 0µ  and 0 21
k

jjµ µ
=

+∑ . 

3.3. The GARCH(m, r) Model with Level Shift 

As indicated earlier, [4] introduced the GARCH(m, r) model which defines the 
conditional variance equation as follows; 

2
0

1 1

r m

t i t i i t i
i i

h hω α ε β− −
= =

= + +∑ ∑                    (40) 

To allow for a volatility level shift, denoted 11ω , after time t τ=  of the data, we 
write th  as the sum of an unobserved GARCH process and the term of the vo-
latility level shift which we will denote as LS-GARCH(m, r). 

( ) 12
0 11

1 1
1

r m

t i t i i t i t
i i

h h B Iτω α ε β ω −
− −

= =

= + + + −∑ ∑            (41) 

( )2
0 11 11

1 1

r m

i t i i t i t
i i

h G B Iτω α ε β ω− −
= =

= + + +∑ ∑             (42) 

where tIτ  is an indicator variable taking values 1 for t τ= , and 0 otherwise. 
The parameter 11ω  indicates the size of the volatility level shift at time t τ= . 

The extension of Equation (41) and Equation (42) to k volatility level shifts is 
straightforward. We define 1 jω  as the th

jτ  shift in volatility level, compared to 
the previous level, where 1, ,j k=  . When we allow k volatility level changes at 
pre-specified time jt τ= , we can extend (41) and (42) to 

( ) 12
0 1

1 1 1
1 j

r m k

t i t i i t i j t
i i j

h h B Iτω α ε β ω −
− −

= = =

= + + + −∑ ∑ ∑         (43) 

( )2
0 1 1

1 1 1

j
r m k

i t i i t i j j t
i i j

h G B Iτω α ε β ω− −
= = =

= + + +∑ ∑ ∑          (44) 

The component ( ) 1
11 1 jk

j tj B Iτω −

=
−∑  governs the level shift movement of 

GARCH model intercept, that is baseline volatility, over time between 0ω  and 

0 11
k

jjω ω
=

+∑ . 

3.4. The GARCH(r, m) Model with Seasonal Level Shift 

Seasonal Level Shift in volatility denoted as SLS-GARCH type intervention dis-
play seasonal features in its pattern. The Seasonal Level Shift (SLS) intervention 
has an effect on the trend given by the step function and an effect on the season-
al component. 

A Seasonal Level Shift intervention in GARCH model at period t τ=  would 
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affect the series th  and is represented by model (45) and (46): 

( ) 12
0 21

1 1
1

r m
s

t i t i i t i t
i i

h h B Iτω α ε β ω
−

− −
= =

= + + + −∑ ∑             (45) 

( )2
0 21 21

1 1

r m
s

i t i i t i t
i i

h G B Iτω α ε β ω− −
= =

= + + +∑ ∑              (46) 

Assuming the observed series contains k seasonal level shifts at time jt τ=  for 
1, ,j k=  , their combined effect can be expressed in general form as: 

( ) 12
0 2

1 1 1
1 j

r m k
s

t i t i i t i j t
i i j

h h B Iτω α ε β ω
−

− −
= = =

= + + + −∑ ∑ ∑          (47) 

( )2
0 2 2

1 1 1

j
r m k

s
i t i i t i j j t

i i j
h G B Iτω α ε β ω− −

= = =

= + + +∑ ∑ ∑           (48) 

The component ( ) 1

21 1 jk s
j tj B Iτω

−

=
−∑  allows the intercept of the GARCH 

model to fluctuate over time between 0ω  and 0 21
k

jjω ω
=

+∑ . 

3.5. The General SARFIMA-GARCH Model with Level Shift 

Extension of ty  the ( ) ( ) ( )SARFIMA , , , , -GARCH ,p d q P D Q s m r  process to 
the case with standard level shift is given by the following equation which we 
will denote as LS-SARFIMA-LS-GARCH 

( ) 1
1

1
1 j

k

t t j t
j

x y B Iτµ −

=

= + −∑  

( )1,   | ~ 0,t t t t t tz h F N hε ε −=  

 ( ) 12
0 1

1 1 1
1 j

r m k

t i t i i t i j t
i i j

h h B Iτω α ε β ω −
− −

= = =

= + + + −∑ ∑ ∑          (49) 

Similarly, extension of ty  the ( ) ( ) ( )SARFIMA , , , , -GARCH ,p d q P D Q s m r  
process to the case with seasonal level shift is given by the following equation 
which we will denote as SLS-SARFIMA-SLS-GARCH 

( ) 1

2
1

1 j
k

s
t t j t

j
x y B Iτµ

−

=

= + −∑  

( )1,   | ~ 0,t t t t t tz h F N hε ε −=  

 ( ) 12
0 2

1 1 1
1 j

r m k
s

t i t i i t i j t
i i j

h h B Iτω α ε β ω
−

− −
= = =

= + + + −∑ ∑ ∑         (50) 

4. Estimation of SLS-SARFIMA-SLS-GARCH Model Parameters 
4.1. Estimation of SLS-SARFIMA Model Parameters 

The first step of estimation consists in estimating the  
( )( )SARFIMA , , , ,p d q P D Q s  assuming that the conditional variance is con-

stant over time. By rearranging Equation (38) for one mean seasonal level shift 
we have:  

 ( ) ( )( ) ( ) ( ) ( ) ( ) 1

0 211 1 1 .
Dds s s s

t t tB B B B y B B B Iφ µ θ ε µ
−

Φ − − = + Θ + −  (51) 
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Therefore the null hypothesis of unconditional mean constancy becomes: 

0 21: 0H µ = . Let ( )2
1 0 21, , , , , , , ,d D εψ µ µ φ θ σ ′′ ′ ′ ′= Φ Θ  be the approximate like-

lihood estimator (MLE) 1ψ̂  of 1ψ  that maximizes the conditional log-likelihood:  

 ( )
2

2
1 2

1 1 1ln 2 ln .
2 2 2

t
tl ε

ε

ε
ψ σ

σ
= − − −π                  (52) 

The partial derivatives evaluated under 0H  are given by: 

0 0

2
1 1

ˆ ˆt t t

H H

l

ε

ε ε
ψ ψσ
∂ ∂

= −
∂ ∂

                       (53) 

• 
( ) ( ) ( ) ( )

0

1
1

0 0

ˆˆ ˆˆ1 1

ˆˆˆ

Dd t Qt j t jss st
jj j

H

Q q t i js
j ij i

y
B B B B

d j d

d

εε
φ

ε
θ

− − −
=

− −
= =

∂∂
= − − Φ + Θ

∂ ∂

∂
+ Θ

∂

∑ ∑

∑ ∑
 

• 
( ) ( ) ( ) ( )

0

1
1

0 0

ˆˆ ˆˆ1 1

ˆˆˆ

Dd t Qt js t jss st
jj j

H

Q q t i js
j ij i

y
B B B B

D js D

D

εε
φ

ε
θ

− − −
=

− −
= =

∂∂
= − − Φ + Θ

∂ ∂

∂
+ Θ

∂

∑ ∑

∑ ∑
 

• 
0

1 0 0
0 0 0

ˆ ˆˆˆ ˆ1 Q Q qt js t i jst
j j ij j i

H

ε εε
θ

µ µ µ
− − −

= = =

∂ ∂∂
= − + Θ + Θ

∂ ∂ ∂∑ ∑ ∑  

• ( )
0

1

1 0 0
21 21 21

ˆ ˆˆˆ ˆ1 Q Q qt js t i jsst
t j j ij j i

H

B I
ε εε

θ
µ µ µ

− − − −
= = =

∂ ∂∂
= − − + Θ + Θ

∂ ∂ ∂∑ ∑ ∑  

• 
( )( ) ( ) ( )

0

1 1

1 0

ˆˆˆ 1 1 , ,

ˆˆˆ

Dd Q t jss st
t t p jj

H

Q q t i js
j ij i

B B B y y
εε

φ φ

ε
θ

φ

−
− − =

− −
= =

∂∂
= Φ − − + Θ

∂ ∂

∂
+ Θ

∂

∑

∑ ∑



 

• 
( )( ) ( ) ( )

0

1

0 0

ˆˆ ˆ1 1 , ,

ˆˆˆ

Dd Q t jsst
t s t ps jj

H

Q q t i js
j ij i

B B B y y
εε

φ

ε
θ

−
− − =

− −
= =

∂∂
= − − + Θ

∂Φ ∂Φ

∂
+ Θ

∂Φ

∑

∑ ∑



 

• 
( )

0

10 0 1

1 0

ˆˆ ˆ ˆ, ,

ˆˆˆ

Q Q Q t jst
j t js j t q js jj j j

H

Q q t i js
j ij i

εε
ε ε

θ θ

ε
θ

θ

−
− − − −= = =

− −
= =

∂∂
= Θ Θ + Θ

∂ ∂

∂
+ Θ

∂

∑ ∑ ∑

∑ ∑



 

• 
( ) ( )

0

2 0 0

1 0 0

ˆ ˆ, , , , ,

ˆ ˆˆˆ ˆ

q qt
t s t s t Qs i t i s i t i Qsi i

H

Q Q qt js t i js
j j ij j i

ε
ε ε ε θ ε θ ε

ε ε
θ

− − − − − − −= =

− − −
= = =

∂
= +

∂Θ

∂ ∂
+ Θ + Θ

∂Θ ∂Θ

∑ ∑

∑ ∑ ∑

 

 

• 
0

2

2 2 4

ˆ1
2 2

t t

Hε ε ε

ε ε
σ σ σ
∂

= − +
∂

 

Under 0H , the LM-type statistics is asymptotically distributed as 2χ  with one 
degree of freedom: 
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0 0 0 0

1

1
1 1 11 1 1 1

1
2

n n n
t t t t

t t tH H H H

l l
LM

ε ε
ψ ψ ψ ψ

−

= = =

 ′   ∂ ∂ ∂ ∂    =  ∂ ∂ ∂ ∂        

∑ ∑ ∑        (54) 

4.2. Estimation of SLS-GARCH Parameters 

Once the SLS-SARFIMA model is estimated and the residuals tε  are obtained, 
we test the alternative of SLS-GARCH specification with one volatility level shift 
against the null hypothesis of GARCH model. Let us rearrange model (41) with 
one volatility level shift: 

( ) ( ) ( ) 1

0 21 1 s
t t t th B B h B Iω α ε β ω

−
= + + + −            (55) 

Therefore the null hypothesis of the unconditional variance constancy be-
comes: 0 21: 0H ω = . Let ( )2 0 21, , ,ψ ω ω α β ′′ ′=  be the vector of the SLS-GARCH 
model parameters and the quasi-likelihood function is given by: 

( )
2

2
1 1 1ln 2 ln .
2 2 2

t
t t

t

l h
h
ε

ψ = − π− −                (56) 

The partial derivatives evaluated under 0H  are given by: 

0 0

2

2 20

ˆ ln1 1ˆ2
t t t

tH H

l h
h
ε

ψ ψ
 ∂ ∂

= − 
∂ ∂  

                (57) 

• ( )
0

1

0 1
0 0

ˆln ˆ ˆ1 m t jt
t jj

H

hh
h β

ω ω

− −
=

 ∂∂
= + 

∂ ∂  
∑  

• ( ) ( )
0

1 1

0 1
21 21

ˆln ˆ ˆ1 m t jst
t t jj

H

hh
h B I β

ω ω

− − −
=

 ∂∂
= − + 

∂ ∂  
∑  

• ( ) ( )
0

1 2
0 1 1

ˆln ˆ ˆ, , m t jt
t t t r jj

H

hh
h ε ε β

α α

− −
− − =

 ∂∂ ′= + 
∂ ∂  

∑  

• ( ) ( )
0

1

0 1 1

ˆln ˆ ˆ, , m t jt
t t t m jj

H

hh
h h h β

β β

− −
− − =

 ∂∂ ′= + 
∂ ∂  

∑  

Under the null hypothesis, the “hats” indicates the maximum likelihood esti-
mator and 0̂th  denotes the conditional variance estimated at time t. Under 0H , 
the LM-type statistics is asymptotically distributed as 2χ  with one degree of 
freedom: 

0 0 0 0

1

2
1 1 12 2 2 2

ln ln1
2

n n n
t t t t

t t tH H H H

l h h l
LM

ψ ψ ψ ψ

−

= = =

 ′   ∂ ∂ ∂ ∂    =  ∂ ∂ ∂ ∂        

∑ ∑ ∑      (58) 

5. Level Shift Detection and Estimation in SARFIMA-GARCH 

In this section we discuss how the iterative detective procedure described in [23] 
and [24] can be extended to allow for both detection and estimation of SLS in 
SARFIMA-GARCH intervention to be denoted SLS-SARFIMA and SLS-GARCH. 
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5.1. Detection and Estimation in SLS-SARFIMA 

Let ( )2
1 0, , , , , , ,d D εψ µ φ θ σ ′′ ′ ′ ′= Φ Θ  be the vector of parameters in model (59) 

( ) ( )( ) ( ) ( ) ( )01 1 ,  1, ,
Dds s s

t tB B B B y B B t nφ µ θ εΦ − − = + Θ =      (59) 

and let us suppose, for the moment, that it is known. Further, suppose that the 
observed series is subject to the influence of a perturbation at time t τ=  such 
that: 

( )21
s

t t tx G B I yτµ= +                         (60) 

where we assume that model (59) is stationary. Model (60) can be rewritten as a 
linear regression model presented in model (61) and model (62) 

( )*
21t t tx Z yµ τ= +                          (61) 

where ( ) ( )* s
t tZ G B Iττ =  is an 1n× . Writing model (61) in matrix form: 

*
21µ= +x Z y                            (62) 

where ( )1, , nx x ′=x  ; ( )1, , ny y ′=y   and ( ) ( )( )* * *
1 , , nZ Zτ τ ′=Z  . 

According to [21], model (62) is a regression model with autocorrelation re-
siduals and therefore the problem of estimating 21µ  can be solved by Genera-
lized Least Squares (GLS).  

Let ( ) 2Var εσ=x Σ  with Σ  a n n×  matrix which depends on 1ψ  and 
which is assumed to be positive definite, and let ′= L LΣ  be the Cholesky de-
composition of Σ  with L  lower triangular. Pre-multiplying Equation (62) by 

1−L , and setting * 1−=e L x , 1 *−=Z L Z  and 1−=e L y , we obtain the Ordinary 
Least Square (OLS) model 

*
21µ= +e Z e                           (63) 

where ( ) 2
nVar εσ=e I . The OLS estimator of 21µ  and its variance are obtained 

from Equation (63) as 

( ) ( ) ( )1 1* 2
21 21ˆ ˆand Var εµ µ σ− −′ ′ ′= =Z Z Z e Z Z            (64) 

As argued in [24], to move from the GLS model in (62) to the OLS model in 
(63), there is no need to evaluate the matrix Σ , since the application of the 
Kalman filter on the observed series x  yields the vector of standardized resi-
duals * 1−=e L x . Similarly, the application of the same filter on vector *Z  pro-
vides the vector 1 *−=Z L Z  from which Equation (64) can be computed. 

To test the null hypothesis that the observation at time t τ=  is not an inter-
vention, one can use the standardized statistic. 

( )
21

21

ˆ
ˆVar

µ
λ

µ
=                          (65) 

which, for known 0ψ , follows a standard normal distribution. By setting ap-
propriate starting conditions (see, for example, ([24] [25], or [26]), the previous 
scheme extends in a straightforward manner to non-stationary series, for which 

ty  follows model (59). 
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5.2. Mean Level Shift Detection in SARFIMA-GARCH 

The mean level shift detection test was previously derived by [27] for ARIMA 
models and extended by [20] for the fractionally integrated ( )ARFIMA , ,p d q  
models assuming conditional variance is constant over time. [28] extended the 
level shift detection test of the mean for a realization of time series { }tx  satis-
fying LS-SARFIMA-LS-GARCH model. For our purpose a natural extension of 
the seasonal level shift detection test of the mean for a realization of time series 
{ }tx  satisfying SLS-SARFIMA and SLS-GARCH model was derived. In order to 
derive the test statistic, let us rewrite model (38), with only one mean seasonal 
level shift: 

( ) 1

21 1 s
t t tx y B Iτµ

−
= + −                        (66) 

The hypothesis to be tested is  
 0 21 1 21: 0 against : 0H Hµ µ= ≠                   (67) 

which is based on 1 2, , , nx x x  a realization of time series { }tx  satisfying 
SARFIMA-GARCH model with mean seasonal level shift. 

Model (66) can be rewritten as 

( ) ( ) 211 1s s
t t tB x B y Iτµ− = − +  

This implies transforming the series by differencing of ( )1 sB− . Thus if 

21 0µ = , ( ) ( )1 1s s
t tB x B y− = − . The intervention parameter 21µ  can be esti-

mated using various methods like the maximum likelihood estimation and least 
square estimation. The least square estimate of 21µ  if the mean intervention is 
at time t τ=  is given by 

( ) ( ) ( )2
21 2

2

1
ˆ 1 1 ,   1, 2, ,

n s
t tt s s

n
tt

B x I
B x B y s s n

I

τ

τ τµ τ=

=

−
= = − = − = + +
∑

∑
  (68) 

Extension of [27] test statistics can be written as: 

( ){ } ( )
( )

21

21

ˆ
max max ,   1, 2, ,

ˆ
n n

t
T T t t s s n

Var t

µ

µ

  = = = + + 
    

     (69) 

where ( )21ˆ t t st x xµ −= −  is the estimated intervention or impact at time t τ=  
and ( )21ˆVar tµ    is an estimate of the variance of ( )21ˆ tµ .  

The distribution of the statistics is based on the fact that it is originally Nor-
mally distributed and then transformed to the Gamma distribution both of 
which belong to the Domain of Attraction of the Gumbel distribution with nor-
malizing constants: 

1) Normal Distribution:  

 ( )
( )( ) ( )

( )
( )

ln ln ln 4
2ln   and  1 2ln

2 2ln
n n

n
d n c n

n

+
= − =

π
        (70) 

2) Gamma Distribution:  

 ( ) ( )( ) ( )2ln ln ln 2ln   and  2n nd n n c= − − πΓ =             (71) 
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The maximum domain of attraction of the Gumbel is shown to some extent in 
[29] and in greater detail in [30]. 

Let the test statistics be given by  

 
2

n n
n

n

T d
S

c
−

=                            (72) 

Then under 0 21: 0H µ = , the statistics nS  satisfies 

( ) ( )( )exp e ,   asyD
nS F y nλ δ− −→ = − →∞              (73) 

where D signifies convergence in distribution. Here, Rλ ∈  is location para-
meter and δ  is scale parameter. The location parameter is also the mode of the 
distribution. Inverse of the ( )F y  in Equation (73), is given by: 

( )( )ln lny Fλ δ= − −                        (74) 

Thus a test of hypothesis can be conducted by comparing the test statistic nS  
in Equation (72) with an appropriate critical value. The largest ( )2

nT t  statistic 
is considered an intervention at the α  significance if the nS  value exceeds the 
critical value. 

5.3. Volatility Seasonal Level Shift Detection in SARFIMA-GARCH  
Model 

The second step is a natural extension of mean seasonal level shift detection in 
SARFIMA-GARCH model to volatility seasonal level shift detection in 
SARFMA-GARCH model. After estimating the SLS-SARFIMA model and the 
residuals tε  are obtained, we test, the alternative hypothesis of SLS-GARCH 
volatility level shift against the null hypothesis of GARCH model. Let us rewrite 
model (47) with one volatility seasonal level shift: 

( ) 1 2
21 0

1 1
1    where

r s
s

t t t t i t i i t i
i i

h g B I g hτω ω α ε β
−

− −
= =

= + − = + +∑ ∑      (75) 

The hypothesis tested is  

 0 21 1 21: 0 against : 0H Hω ω= ≠                    (76) 

which is based on 1 2, , , nh h h  a realization of time series { }th  from a 
GARCH model with seasonal level shift. 

The derivation is based on the statistics 

( ) ( ){ }
( )

( )
( )

( )
21 21

21 21

max 1 , ,

ˆ ˆ1
max , ,

ˆ ˆ1

n n nT T T n

n

Var Var n

ω ω

ω ω

=

  =  
        





             (77) 

where ( )21ˆ t t st h hω −= −  is the estimated intervention or impact at time t τ=  
and ( )21ˆVar tω    is an estimate of the variance of ( )21ˆ tω . 

Model (75) can be rewritten as 

( ) ( ) 211 1s s
t t tB h B g Iτω− = − +                     (78) 
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Thus if 21 0ω = , ( ) ( )1 1s s
t tB h B g− = − . The intervention parameter 21ω  can 

be estimated using various methods like the maximum likelihood estimation and 
least square estimation. The least square estimate of 21ω  if the volatility inter-
vention is at time t τ=  is 

( )
( )

( ) ( )2
21 2

2

1
ˆ 1 1 ,   1, 2, ,

n s
t tt s s

n
tt

B h I
B h B g s s n

I

τ

τ τ
τ

ω τ=

=

−
= = − = − = + +
∑
∑

  (79) 

The distribution of the statistics is based on the fact that it is originally Nor-
mally distributed and then transformed to the Gamma distribution both of 
which belong to the Domain of Attraction of the Gumbel distribution with nor-
malizing constants: 

1) Normal Distribution:  

 ( )
( )( ) ( )

( )
( )

ln ln ln 4
2ln   and  1 2 ln

2 2ln
n n

n
d n c n

n

+
= − =

π
      (80) 

2) Gamma Distribution:  

 ( ) ( )( ) ( )2ln ln ln 2ln   and  2n nd n n c= − − πΓ =            (81) 

The maximum domain of attraction of the Gumbel is shown to some extent in 
[29] and in greater detail in [30]. 

Let { }th  be a time series satisfying the volatility seasonal level shift model  

 ( ) ( ) 211 1s s
t t tB h B g Iτω− = − +                    (82) 

For any realization 1 2, , , nh h h  of this time series, let the test statistics be 
given by:  

 
2

n n
n

n

T d
S

c
−

=                           (83) 

Then under 0 21: 0H ω = , the statistics nS  satisfies 

( ) ( )( )exp e ,   asyD
nS F y nλ δ− −→ = − →∞            (84) 

where D signifies convergence in distribution. Thus a test of hypothesis can be 
conducted by comparing the test statistic nS  Equation (83) with an appropriate 
critical value. The largest ( )2

nT i  statistic is considered as volatility intervention 
at the α  level of significance if the test statistic nS  value exceeds the critical 
value. 

5.4. Mean and Volatility Level Shift Detection in SARFIMA-GARCH 

Summary of the detection procedure is presented below: 
1) Plot the data to get a picture of the type of series and possible seasonal level 

shift in the data.  
2) Assume that the underlying SARFIMA-GARCH series { }ty  contains no 

level shift and use maximum likelihood procedure to estimate its parameters.  
3) The first test is performed to check the mean seasonal level shift which can 

be conducted as follows: 
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a) State the hypothesis being tested, which is  

 0 21 1 21: 0 against : 0H Hµ µ= ≠                   (85) 

b) Compute the residuals, the impact 21µ  and the test statistics like the pop-
ular [27]’s likelihood ratio test statistics given by  

( ){ } ( )
( )

21

21

ˆ
max max ,   1, 2, ,

ˆ
n n

t
T T t t s s n

Var t

µ

µ

  = = = + + 
    

  

Then compute the statistics:  
2

n n
n

n

T d
S

c
−

=  

c) Determine the critical values to use in the test. 
d) Determine whether observations are seasonal level shifts and remove each 

from the series by subtracting the value of the impact 2 , 1, ,i i kµ =   then apply 
the SARFIMA-GARCH modeling procedure to obtain the adequate model.  

4) The second test is performed to check the volatility level shift which can be 
conducted as follows: 

a) State the hypothesis being tested, which is  

 0 21 1 21: 0 against : 0H Hω ω= ≠                  (86) 

b) Compute the residuals, the impact 21ω  and the test statistics like the pop-
ular [27]’s likelihood ratio test statistics given by 

( ) ( ){ }
( )

( )
( )

( )
21 21

21 21

max 1 , ,

ˆ ˆ1
max , ,

ˆ 1 ˆ

n n nT T T n

n

Var Var n

ω ω

ω ω

=

 
 =  

        





          (87) 

Then compute the statistics:  
2

n n
n

n

T d
S

c
−

=  

c) Determine the critical values to use in the test. 
d) Determine whether observations are level shifts and remove each from the 

series by subtracting the value of the impact [ ]2 , 1, ,i i kω =   then apply the 
SARFIMA-GARCH modeling procedure to obtain the adequate model.  

6. Conclusions 

This paper focused on the theoretical derivation of the class of seasonal fraction-
ally integrated autoregressive moving average-conditional heteroskedastisticty 
(SARFIMA-GARCH) models, with level shift type intervention. The following 
derivations were established:  

1) A natural extension of the seasonal level shift detection test of the mean for 
a time series satisfies SLS-SARFIMA.  

2) A natural extension of the seasonal level shift detection test of the volatility 
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for a time series satisfies SLS-GARCH.  
3) Test statistics that are useful to examine if seasonal level shift in an 

SARFIMA-GARCH model was established.  
4) Estimation of SLS-SARFIMA and SLS-GARCH parameters was derived 

using quasi maximum likelihood estimation.  
To appreciate the procedure, we derived a simulation study consisting of si-

mulation of critical values for mean and volatility seasonal level shift, simulating 
different sizes of mean and volatility seasonal level shift impact, performing de-
tection test and conducting the power of the mean level shift detection proce-
dure which are considered in a separate paper by the same authors. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Granger, C.W. and Joyeux, R. (1980) An Introduction to Long-Memory Time Series 

Models and Fractional Differencing. Journal of Time Series Analysis, 1, 15-29.  
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x 

[2] Hosking, J.R. (1981) Fractional Differencing. Biometrika, 68, 165-176.  
https://doi.org/10.1093/biomet/68.1.165 

[3] Robinson, P.M. and Zaffaroni, P. (1998) Nonlinear Time Series with Long Memory: 
A Model for Stochastic Volatility. Journal of Statistical Planning and Inference, 68, 
359-371. https://doi.org/10.1016/S0378-3758(97)00149-3 

[4] Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroskedasticity. 
Journal of Econometrics, 31, 307-327.  
https://doi.org/10.1016/0304-4076(86)90063-1 

[5] Bollerslev, T., Engle, R.F. and Wooldridge, J.M. (1988) A Capital Asset Pricing 
Model with Time-Varying Covariances. Journal of Political Economy, 96, 116-131.  
https://doi.org/10.1086/261527 

[6] Weiss, A.A. (1984) ARMA Models with Arch Errors. Journal of Time Series Analy-
sis, 5, 129-143. https://doi.org/10.1111/j.1467-9892.1984.tb00382.x 

[7] Ling, S.Q. and Li, W.K. (1997) On Fractionally Integrated Autoregressive Mov-
ing-Average Time Series Models with Conditional Heteroscedasticity. Journal of the 
American Statistical Association, 92, 1184-1194.  
https://doi.org/10.1111/j.1467-9892.1984.tb00382.x 

[8] Reisen, V.A., Sarnaglia, A.J.Q., Reis Jr., N.C., L’Evy-Leduc, C. and Santos, J.M. 
(2014) Modeling and Forecasting Daily Average PM10 Concentrations by a Season-
al Long-Memory Model with Volatility. Environmental Modelling & Software, 51, 
286-295. https://doi.org/10.1016/j.envsoft.2013.09.027 

[9] Tong, H. (2011) Nonlinear Time Series Analysis.  

[10] Narayan, P.K., Liu, R. and Westerlund, J. (2016) A Garch Model for Testing Market 
Efficiency. Journal of International Financial Markets, Institutions and Money, 41, 
121-138.  

[11] Baillie, R.T., Chung, C.-F. and Tieslau, M.A. (1996) Analysing Inflation by the Frac-
tionally Integrated Arfima-Garch Model. Journal of Applied Econometrics, 11, 

https://doi.org/10.4236/ojs.2020.105047
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1016/S0378-3758(97)00149-3
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1086/261527
https://doi.org/10.1111/j.1467-9892.1984.tb00382.x
https://doi.org/10.1111/j.1467-9892.1984.tb00382.x
https://doi.org/10.1016/j.envsoft.2013.09.027


L. Dhliwayo et al. 
 

 

DOI: 10.4236/ojs.2020.105047 830 Open Journal of Statistics 
 

23-40.  
https://doi.org/10.1002/(SICI)1099-1255(199601)11:1%3C23::AID-JAE374%3E3.0.C
O;2-M 

[12] Montanari, A., Rosso, R. and Taqqu, M.S. (2000) A Seasonal Fractional ARIMA Mod-
el Applied to the Nile River Monthly Flows at Aswan. Water Resources Research, 36, 
1249-1259. https://doi.org/10.1029/2000WR900012 

[13] Giraitis, L. and Leipus, R. (1995) A Generalized Fractionally Differencing Approach 
in Long-Memory Modeling. Lithuanian Mathematical Journal, 35, 53-65.  
https://doi.org/10.1007/BF02337754 

[14] Box, G.E., Jenkins, G.M., Reinsel, G.C. and Ljung, G.M. (2015) Time Series Analy-
sis: Forecasting and Control. John Wiley & Sons, Hoboken.  

[15] Bisognin, C. and Lopes, S.R.C. (2009) Properties of Seasonal Long Memory 
Processes. Mathematical and Computer Modelling, 49, 1837-1851.  
https://doi.org/10.1016/j.mcm.2008.12.003 

[16] Ishida, I. and Engle, R.F. (2002) Modeling Variance of Variance: the Square Root, 
the Affine, and the Cev Garch Models. Dept. Finances, New York.  

[17] Fox, A.J. (1972) Outliers in Time Series. Journal of the Royal Statistical Society: Se-
ries B (Methodological), 34, 350-363.  
https://doi.org/10.1111/j.2517-6161.1972.tb00912.x 

[18] Tsay, R.S. (1986) Time Series Model Specification in the Presence of Outliers. Jour-
nal of the American Statistical Association, 81, 132-141.  
https://doi.org/10.1080/01621459.1986.10478250 

[19] Chen, C. and Liu, L.-M. (1993) Joint Estimation of Model Parameters and Outlier 
Effects in Time Series. Journal of the American Statistical Association, 88, 284-297.  
https://doi.org/10.1080/01621459.1993.10594321 

[20] Chareka, P., Matarise, F. and Turner, R. (2006) A Test for Additive Outliers Appli-
cable to Long Memory Time Series. Journal of Economic Dynamics and Control, 
30, 595-621. https://doi.org/10.1016/j.jedc.2005.01.003 

[21] Kaiser, R. and Maravall Herrero, A. (1999) Seasonal Outliers in Time Series. Banco 
de Espana, Documentos de trabajo No. 9915, Madrid.  

[22] Palate, J. (2006) Reusable Components for Seasonal Adjustment: A New Imple-
mentation of Tramo-Seats. Proceedings of the Conference on Seasonality, Seasonal 
Adjustment and Their Implications for Short-Term Analysis and Forecasting, Eu-
rostat, Luxembourg, 1-25.  
http://ec.europa.eu/eurostat/documents/4578629/4579724/PALATE-FINAL.pdf  

[23] Tsay, R. (2005) Analysis of Financial Time Series. Vol. 543, Financial Econometrics, 
John Wiley & Sons, Hoboken, New Jersey. 

[24] G’Omez, V. and Maravall, A. (1994) Estimation, Prediction, and Interpolation for 
Nonstationary Series with the Kalman Filter. Journal of the American Statistical 
Association, 89, 611-624. https://doi.org/10.1080/01621459.1994.10476786 

[25] Kohn, R. and Ansley, C.F. (1985) Efficient Estimation and Prediction in Time Series 
Regression Models. Biometrika, 72, 694-697.  
https://doi.org/10.1093/biomet/72.3.694 

[26] Bell, W. and Hillmer, S. (1991) Initializing the Kalman Filter for Nonstationary 
Time Series Models. Journal of Time Series Analysis, 12, 283-300.  
https://doi.org/10.1111/j.1467-9892.1991.tb00084.x 

[27] Chang, I., Tiao, G.C. and Chen, C. (1988) Estimation of Time Series Parameters in 
the Presence of Outliers. Technometrics, 30, 193-204. 

https://doi.org/10.4236/ojs.2020.105047
https://doi.org/10.1002/(SICI)1099-1255(199601)11:1%3C23::AID-JAE374%3E3.0.CO;2-M
https://doi.org/10.1002/(SICI)1099-1255(199601)11:1%3C23::AID-JAE374%3E3.0.CO;2-M
https://doi.org/10.1029/2000WR900012
https://doi.org/10.1007/BF02337754
https://doi.org/10.1016/j.mcm.2008.12.003
https://doi.org/10.1111/j.2517-6161.1972.tb00912.x
https://doi.org/10.1080/01621459.1986.10478250
https://doi.org/10.1080/01621459.1993.10594321
https://doi.org/10.1016/j.jedc.2005.01.003
http://ec.europa.eu/eurostat/documents/4578629/4579724/PALATE-FINAL.pdf
https://doi.org/10.1080/01621459.1994.10476786
https://doi.org/10.1093/biomet/72.3.694
https://doi.org/10.1111/j.1467-9892.1991.tb00084.x


L. Dhliwayo et al. 
 

 

DOI: 10.4236/ojs.2020.105047 831 Open Journal of Statistics 
 

 https://doi.org/10.1080/00401706.1988.10488367 

[28] Dhliwayo, L., Matarise, F. and Chimedza, C. (2020) Autoregressive Fractionally Inte-
grated Moving Average-Generalized Autoregressive Conditional Heteroskedasticity 
Model with Level Shift Intervention. Open Journal of Statistics, 10, 341-362.  
https://doi.org/10.4236/ojs.2020.102023 

[29] Leadbetter, M.R., Lindgren, G. and Rootzen, H. (1983) Extreme and Related Prop-
erties of Random Sequence and Processes. Springer-Verlag, New York. 

[30] Embrechts, P., Klppelberg, C. and Mikosch, T. (1997) Modeling Extremal Events for 
Insurance and Finance. Springer-Verlag, Berlin.  
https://doi.org/10.1007/978-3-642-33483-2 

 
 

https://doi.org/10.4236/ojs.2020.105047
https://doi.org/10.1080/00401706.1988.10488367
https://doi.org/10.4236/ojs.2020.102023
https://doi.org/10.1007/978-3-642-33483-2

	Modeling Seasonal Fractionally Integrated Autoregressive Moving Average-Generalized Autoregressive Conditional Heteroscedasticity Model with Seasonal Level Shift Intervention
	Abstract
	Keywords
	1. Introduction
	2. SARFIMA-GARCH Models
	2.1. ARFIMA Process
	2.2.  Process
	2.3. The GARCH(m, r) Model
	2.4. The General SARFIMA-GARCH Model
	2.5. Variance of Variance in the Standard GARCH(m, r) Model
	2.6. Intervention in ARIMA Models

	3. SARFIMA-GARCH Models with Level Shift
	3.1. The SARFIMA Model with Level Shift 
	3.2. The SARFIMA Model with Seasonal Level Shift 
	3.3. The GARCH(m, r) Model with Level Shift
	3.4. The GARCH(r, m) Model with Seasonal Level Shift
	3.5. The General SARFIMA-GARCH Model with Level Shift

	4. Estimation of SLS-SARFIMA-SLS-GARCH Model Parameters
	4.1. Estimation of SLS-SARFIMA Model Parameters
	4.2. Estimation of SLS-GARCH Parameters

	5. Level Shift Detection and Estimation in SARFIMA-GARCH
	5.1. Detection and Estimation in SLS-SARFIMA
	5.2. Mean Level Shift Detection in SARFIMA-GARCH
	5.3. Volatility Seasonal Level Shift Detection in SARFIMA-GARCH Model
	5.4. Mean and Volatility Level Shift Detection in SARFIMA-GARCH

	6. Conclusions
	Conflicts of Interest
	References

