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Abstract 

Penalized spline has been a popular method for estimating an unknown func-
tion in the non-parametric regression due to their use of low-rank spline 
bases, which make computations tractable. However its performance is poor 
when estimating functions that are rapidly varying in some regions and are 
smooth in other regions. This is contributed by the use of a global smoothing 
parameter that provides a constant amount of smoothing across the function. 
In order to make this spline spatially adaptive we have introduced hierarchic-
al penalized splines which are obtained by modelling the global smoothing 
parameter as another spline. 
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1. Introduction 

Non parametric smoothing involves letting the data determine the amount of 
smoothing. Classical smoothing splines use a global smoothing parameter in or-
der to control the amount of smoothing in a function. When homogeneity of the 
smoothness cannot be reasonably assumed across the whole domain of the func-
tion, a natural extension is to allow the smoothing parameter to vary over the 
domain as a penalty function of independent variable, adapting to the change of 
roughness [1] [2]. Adaptive smoothing has been an interesting topic in statistics 
and it involves allowing the smoothing parameter, the bandwidth or the place-
ment of knots to vary across the domain, adapting to the change of roughness 
[3]-[10]. In penalized regression splines, [11] modeled the penalty function by a 
linear interpolation on the logarithmic scale, [12] modeled the penalty function 
from full Bayesian approach and used Markov chain Monte Carlo for computa-
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tion, [13] developed a fast and simple algorithm for the Bayesian p-spline based 
on Laplace approximation for the marginal likelihood. Modeling the smoothing 
parameter as a penalty function of independent variable can also be used to 
achieve adaptiveness. This involves formulating the adaptive smoothing as a mi-
nimization problem with a new penalty function in which the estimate has the 
same form as the smoothing spline and method developed for classical smooth-
ing splines can be used. [1] derived the reproducing kernels for a generic penalty 
function and suggested modeling it by B-splines. [2] studied the solution of the 
penalized least square estimate in which the Smoothing parameter is a varying 
function across the domain under the Reproducing Kernel Hilbert Space ap-
proach. [14] proposed to model the penalty function by a step function where 
the segmentation is data driven and estimate it by maximizing the generalized 
likelihood. A complexity penalty was added to the generalized likelihood in se-
lecting the best step function from a collection of candidate. This approach was 
very computational expensive due to the large number of candidate models and 
proposed search algorithm and thus has a serious limitation. In this research we 
aim at developing a Hierarchical penalty model using p-splines which will result 
in more adaptive smoothing. 

2. Modeling Approach 

2.1. Penalized Splines 

P-splines are low-order basis spline with a penalty to avoid under smoothing. 
They are typically not spatially adaptive and hence have trouble when functions 
are varying rapidly. Regression splines are approximations to functions typically 
using low-order number of basis function. These splines are subject to lack of 
smoothness and various strategies have been proposed to attain this smoothness. 
e.g Regression P-splines [15] achieves smoothness by penalizing the sum of 
squares or likelihood by a single penalty parameter. The penalty parameter and 
the fit using P-splines are easy to compute using mixed model technology; [16] 
[17] [18] and are not sensitive to knot parameter selection [11]. A penalized 
spline can be seen as a compromise between smoothing and regression spline 
and it combines the attractive attributes of regression and smoothing splines. 
They are basically regression spline in which the penalty is applied directly to the 
coefficients of the piecewise polynomial. Hence one can retain a large number of 
knots and constrain their effect using a penalty to avoid over fitting. The number 
of knots defining the spline function is larger than that justified by the data but 
smaller than the number of observations. Thus they are referred to as low-rank 
smoothers and this significantly reduces numerical effort. The level of over fit-
ting is controlled by a roughness penalty over the curve. The most common 
choice is a penalty based on the integral of a squared derivative of a spline curve. 
To avoid the drawbacks in regression spline and optimize the fit we can choose a 
large number of knots e.g. min (n/4, 40) as suggested by [11] and prevent over 
fitting by penalizing the coefficients of splines. That is, one finds 
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d
Y X Sd

β
β− −                        (1) 

subject to 2d a<  for non negative constant a. Where Y is the response varia-
ble, β and d are the fixed and random effects vectors, X and S are the design ma-
trices associated with the fixed and random effects vectors. Using a Lagrange 
multiplier, this minimization can be written as 

2 2T T

, ,
min min

d d
Y X Sd d d y C D

β β
β ω θ ωθ θ− − + = − +         (2) 

With ( )TT T,dθ β= , D is a block diag ( ) ( )1 10 Kp p I+ × +  and 0.ω ≥  
The resulting estimate is given by  

( ) 1T Tŷ Z Z Z D Z yω
−

= +                    (3) 

The smoothness of this estimate varies continuously as a function of a global 
smoothing parameter ω. The larger the value of ω the more the fit shrinks to-
wards polynomial fit while small values of ω result in an over fitted estimate. 
Penalized spline can be seen as a generalization of the spline smoothing with 
more flexible choice of bases, penalties and knots. One chooses the spline basis 
based on sufficiently large number of knot and penalizes unnecessary structure. 
This spline possesses a number of good properties: It shows no boundary effect 
as many kernels smoother do. i.e. the spreading of a fitted curve as density out-
side of the domain of the data generally accompanied by bending towards zero, 
it is a straight forward extension of (generalized) linear regression models, con-
serve moments (means, variances) of the data i.e. Given a linear p spline with 
degree q + 1 and a penalty of order q + 1 or higher 

1 1
ˆk kq q

j jj jx y x y
= =

=∑ ∑                     (4) 

For all values of the smoothing parameter ω where ˆ jy  the fitted values are. 
This property is very useful in density smoothing where mean and variance of 
the estimated density are the same as mean and the variance of the data for any 
amount of smoothing. It also has polynomial curve fit as its limits. That is, for a 
penalty of order q and large values of the smoothing parameter ω, the fitted 
function will approach a polynomial of degree 1q − , if the degree of the p-spline 
is equal or higher than q. Also the computations, including those of cross valida-
tion are relatively cheap and can easily be incorporated into standard software 
[15]. 

2.2. Mixed Models 

Mixed model are regression model with both the fixed effects and random ef-
fects. They correspond to a hierarchy of levels with the repeated, correlated 
measurement occurring among all the lower level units for each particular upper 
level. The standard linear mixed model has the form 

Y X Sdβ ε= + +                          (5) 

where Y is a vector of observed responses, β is an unknown vector of fixed ef-
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fects, d is an unknown vector of random effects or subject specific, with mean 
zero and variance W, X and S are design matrices associated with a vector of 
fixed effects β and a vector of random effects d respectively and ε is a vector of 
residual error term with zero mean and covariance matrix P. The dimensions of 
the design matrices X and S must conform to the lengths of the observation vec-
tor Y and the number of fixed and random effects respectively. It is generally 
assumed that the elements of d are uncorrelated with the elements of ε in which 
case the covariance matrix of the random effects and residual error term is a 
block diagonal 

0
0

d W
var

Pε
   

=   
   

                       (6) 

The matrices S and W will themselves be block diagonal if the data arise from 
a hierarchical structure, where a fixed number of random effects common to 
observations within a single higher-level unit are assumed to vary across the 
units for a given level of the hierarchy. Typically the vectors of residual errors 
are taken to independent and identically distributed and thus 2P Iεσ=  where 

2
εσ  is the residual variance. The covariance matrix W of the random effects 

vector d is often assumed to have a structure that depends on a series of un-
known variance component parameters that need to be estimated in addition to 
the residual variance 2

εσ  and the vector of fixed effects β. 
The universal estimators of the fixed and random effects are the best linear 

unbiased estimators (BLUE) β̂  of β and the best linear unbiased predictors 
(BLUP) d̂  of d. This can be recovered as the solution to the mixed model equ-
ation, 

T 1 T 1 T 1

T 1 T 1 1 T 1

ˆ

ˆ
X P X X P Y X P Y
R P X Y P S F S P Yd

β− − −

− − − −

    
=     +    

             (7) 

A mixed model is of the form, 

Y X Sdβ ε= + +  

Assuming that d and ε are multivariate normal; 

0 0
~ ,

0 0
d W

N
Pε

      
      

      
                     (8) 

and taking ( )H var Y= . Then ( )~ ,Y N X Hβ  Which result into a pdf  

( ) ( )21 1; , exp
22

f y H y X
HH

β β = − − 
π  

 

The likelihood function becomes, 

( ) ( ) ( ) ( )2
2

11

1; , ; , 2 exp
2

nn n
iiL y H f y H H y X

H
β β β−

==
= = π  

 


−


−∑∏   (9) 

The log likelihood becomes, 

( ) ( ) ( )T T11; , log 2 log exp
2 2 2
n nl y H H y X H y Xβ β β− = − π− + − − −  
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( ) ( ) ( ){ }T T11; , log 2 log
2

l y H H y X H y Xβ β β−= − π+ + − −      (10) 

where ( ) TH var Y SWS P= = + . Assuming that the parameters defining the co-
variance matrices W and P are known, the MLE β̂  of β is  

( ) 1T 1 T 1ˆ X H X X H yβ
−− −=                   (11) 

which although not obvious algebraically must also satisfy the mixed model eq-
uation given earlier. Since one of the ways in which these equations can be de-
rived is directly from multivariate normality assumption. Typically W and P will 
not be known and can be estimated by substituting the expression for β̂  back 
into ( ); ;l W Pβ  and maximizing the result over the parameters defining W and 
P. Once estimates for W and P have been determined, we can return to the 
mixed model equations and determined the BLUP d̂  of random effects vector 
d as the vector that minimizes the expected mean squared error of prediction. 

( ) ( ){ }Tˆ ˆE d d d d− −                       (12) 

The BLUP of d can be expressed as the posterior expectation of the random 
effects given the data ( )d̂ E d Y=  which can be solved explicitly under the 
normality assumption to yield, 

( )T 1ˆ ˆd WS H Y X β−= −                      (13) 

2.3. Hierarchical Penalized Mixed Model 

Assuming 

( )( )2~ ; , 1, 2, ,i iY N m X i nσ =                   (14) 

where ( )im X  is modelled as truncated polynomial spline 

( ) ( )1
0 1 1

qrq
p k kkm X X X Xβ β β ρ τ

= +
= + + + + −∑          (15) 

where 1 2, , , rτ τ τ  are the knots covering the range of x’s and 

( ) ( ) ( ) 0

0, otherwise

,q q
q k k

k
X X

X
τ τ

τ + +
+

 − − >− = 


 

The knots are placed over the range of x’s and the dimension of r is chosen 
generously. In penalized spline the approach is to put a penalty on the coefficient 
of kρ . The standard approach is to minimize sum of squares and the quadratic 
penalty T Dωρ ρ , where ω is the penalty parameter and D is the penalty square 
matrix. In truncated polynomial D is an identity matrix and the penalty is 

Tωρ ρ . In B spline basis the penalty is constructed using the difference between 
neighboring spline coefficients [15]. An important feature of penalized spline is 
its links to linear mixed model. Due to this link we assume 

( )2 1~ 0,N Dρρ σ −  

where ρ is a vector of spline coefficients, 2 2
ρ εσ σ ω=  and 1D−  is a generalized 

inverse of D. 
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In this approach a single parameter 2
ρσ  is used to shrink all the coefficients 

of spline and this can be a limitation especially if the underlying function is lo-
cally varying, i.e. it fails to completely capture the features of functions that ex-
hibit strong heterogeneity. One way to avoid this is to allow the coefficients 

1, , rρ ρ  to have prior variances { }( )2~ 0,k kN ρρ σ τ  and assume that the 
shrinkage variance process { }2

kρσ τ  is a smooth function modeled as a 
log-penalized spline 

{ } ( )12
0 1 1exp

p ql
k p j jj h Xτ τ

ρσ τ γ γ γ α
= +

 = + + + + −  ∑       (16) 

where 1 2, , , lα α α  is a second layer of knots covering the range of 

1 2, , , rτ τ τ . l is practically less than r. The hierarchical penalized smoothing 
model is completed by the shrinkage assumption ( )2~ 0, , 1, 2, ,j hh N j lσ =   
and 2

hσ  is constant.  
Thus our hierarchical smoothing model can be written as 

( )2| , , ~ 0, nY h X S N Iρ ρ ερ β ρ ε ε σ= + +  

( )| ~ 0,h N ρρ Σ  

( ){ }Texp h hdiag X y Z Cρ = +Σ  

( )2~ 0, l nC N Iσ  

where: 

( ) ( )

( ) ( )

1

1

11 1 11
: , ,

1

q qq
r

n n n

q
n r

q q

y x x x
y X S

y x x x
ρ ρ

τ τ

τ τ

+ +

+ +

     − −         = = =                − −       

 

     
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1 1 1 1

1

1
,

1

ppp
l

h h
p pp
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X Z
τ τ α τ α

τ τ α τ α

+ +

+ +
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
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( ) ( )T T
0 0,, , , ,p rβ β β ρ ρ ρ= =   

3. Results and Conclusion 

Penalized splines are very common in parametric regression but they have one 
major drawback in that they are not spatially adaptive. This is due to the use of a 
global smoothing parameter across the whole heterogeneous function. In this 
research we aimed at coming up with a spatially adaptive penalized spline by in-
troducing hierarchical splines. This was achieved by modeling the global 
smoothing parameter ω that is normally used in classical smoothing as another 
spline.  
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