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Abstract 

In this paper we aim to analyse temporal variation of CD4 cell counts for 
HIV-infected individuals under antiretroviral therapy by using statistical 
methods. This is achieved by resorting to recursive binary regression tree ap-
proach [1] [2]. This approach has made it possible to highlight the existence 
of several segments of the population of interest described by the interactions 
between the predictive covariates of the response to the treatment regimen. 
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1. Introduction 

SubSaharan Africa’s population is among the most HIV infected in the world. In 
2014, there were 1.4 million (1.2 - 1.5 million) new infections and around 
790,000 (690,000 - 990,000) people died of AIDS-related illnesses [3]. These 
alarming statistics indicate a generalised HIV epidemic. On the one hand, 
HIV/AIDS infection is correlated with high risk behaviors such as occasional 
unprotected sex. On the other hand, the burden of the disease is correlated with 
poverty, weakness of health system, discrimination toward girls and women, low 
education level, malnutrition, migration, stigmatization of persons living with 
HIV/AIDS (PLWHA) and low volume of funding for the fight against 
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HIV/AIDS [4] [5]. In addition, PLWHA are sometimes less observant during the 
treatment period or co-infected by Tuberculosis and then may face failure of 
treatment [6] [7]. 

In Burkina Faso, the overall HIV prevalence was estimated to be 1.8% in 2003 
[8]. The antiretroviral therapy (ART) program started in 1999 with the financial 
support of international funding institutions and NGOs [9]. The Global Fund to 
Fight against AIDS, Malaria and Tuberculosis was the leading funding program 
between 2003 and 2007 [10]. Its intervention in Burkina Faso was the subject of 
an evaluation at the end of the five-year period 2003-2007. It aimed at measuring 
the intervention effects on health service access as well as HIV/AIDS related 
morbidity and mortality. Among other questions that deserve additional atten-
tion, there is that of the effectiveness of care through the analysis of the response 
to treatment of people who benefited from it. Viral load and CD4 cells count are 
relevant indicators that can be considered for such an investigation. CD4 cells 
count is low cost, simple to measure and a good predictor of the HIV dynamics 
during treatment [11]. Since it is unclear how health conditions at the beginning 
of treatment and the demographic characteristics are correlated to the temporal 
variations of CD4 cells count, we propose to address this gap in this paper. The 
aim of this study is to model temporal variations of CD4 cell counts in a sample 
of ART patients with a longitudinal tree regression approach. 

2. Data 

Data come from the Global fund to fight AIDS, Tuberculosis and Malaria Five 
year evaluation survey database. The sample included both male and female 
older than 15 that had initiated ART between 1st Jan 2003 and 31st Dec 2007. 
Data consisted of socio-demographic characteristics and semesterly CD4 count 
evaluations during the follow-up period. More details on patient sampling and 
data collection can be found in [6]. Finally, we applied the following patient se-
lection criteria: at least two CD4 counts available of which one is the baseline 
CD4 count; first line ART regimen, and baseline WHO clinical stage available. 

We also applied two operations to complete cases. First, we created 3 new va-
riables: body mass index (BMI) and the CD4 count evaluation clinical visit index 
(Time). Then we corrected the positive asymmetry of the distribution of CD4 
count by applying a square root transformation. 

Baseline Data Description 

Our study included 3459 ART patients from 14 ART centres. Most centres (98%) 
were urban. For most patients (95%), the regimen consisted of two nucleoside 
reverse transcriptase inhibitors (NRTI) plus one non-nucleoside reverse tran-
scriptase inhibitor (NNRTI). Table 1 shows that 72% were female, 70% were 
married, 95% were infected by HIV1, 81% initiated ART at WHO clinical stages 
between 3 and 4, and 83% had CD4 count lower than 200. The median age at 
ART initiation was 35 (30; 40). 
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Table 1. Patients’ characteristics. 

Variable (Acronym) Domain Count (%) 
CD4 at baseline 

Median 
(Min, Max) 

p-value 

Gender (Genre) Female 2481 (71.7) 136 (77; 188) 0.000 

 Male 978 (28.3) 107 (51; 169)  

Marital Status Widowed 226 (6.7) 156 (86; 203 ) 0.001 

(EtatCivil) Married 2426 (71.4) 130 (70; 182)  

 Divorced/Separated 81 (2.4) 116 (70; 168)  

 Never married 665 (19.6) 118 (53; 180)  

Age (Age) (15; 73)    

Mode of entry 
in the active list 

(Entry Mod) 
    

 NGO 548 (15.8) 132 (71; 186) 0.004 

 CDT 49 (1.4) 126 (85; 171)  

 CDVA 1126 (32.6) 125 (63; 176)  

 CTA 123 (3.6) 138 (75; 207)  

 Private Facility 628 (18.2) 125 (64; 189)  

 Public facility 232 (6.7) 138 (85; 188)  

 Relatives 392 (11.3) 128 (64; 188)  

 Transfer 392 (11.3) 117 (58; 178)  

HIV type HIV1 3285 (95) 128 (67; 183) 0.97 

(Serologie) HIV2 86 (2.5) 129 (65; 172)  

 HIV1&2 88 (2.5) 133 (79; 175)  

WHO clinical 
stage (StadeOMS) 

Stage 1&2 669 (19.3) 151 (100; 197) 0.000 

 Stage 3 1978 (57.2) 129 (68; 181)  

 Stage 4 812 (23.5) 106 (49; 170)  

Body Mass 
Index (IMCini) 

(9.6; 38.6)    

Regimen 2 NRTI + 1 NNRTI 3303 (95.5) 129 (69; 183) 0.20 

(Traitement 2) Other ART regimen 156 (4.5) 115 (54; 172)  

Follow-up visit 
index (Time) 

(2; 11)    

Note: 1) NGO: non-governmental organization; CDT: Centre de Dépistage et de traitement de la 
Tuberculose; CTA: Centre de Traitement Ambulatoire; CDVA: Centre de Dépistage Volontaire et 
Anonyme. 2) We used Kruskall-Wallis and Mann-Whitney tests to compareCD4counts distribution. 
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3. Statistical Methodology 

3.1. Statistical Model 

The statistical model considered in this study for the data analysis belongs to the 
class of the varying-coefficients regression models as introduced by [12] after 
[13]. In this setting the regression coefficients are allowed to vary with respect to 
some covariates called effect modifiers or moderators. When dealing with the 
framework of the linear model, the dependence of the regression coefficients 

jβ  of a predictor jX  on effects modifiers should be understood as the expres-
sion of an interaction between X and the effects modifiers. Let’s consider a re-
sponse variable Y conjointly with covariates (X, Z) where ( )1, , pX X X=   and 

( )1, , qZ Z Z=  . Let’s denote ( )   and ( )   respectively the spaces of 

the potential values of X and Z and ( ) ( ), | ,x z E Y X x Z zµ = = =  with x in 

( )   and z in ( )  ; the varying-coefficients model will take the following 

form: ( ) ( ) ( )1 1, p px z z x z xµ β β= + + . For the present study the functions 

( )j zβ  are modeled through a binary tree as follows: 

( ) ( ) ( )1 1j j jK Kz Ind z N Ind z Nβ β β= ∈ + + ∈  

where ( ), 1, ,kN k K=   is rectangular partition of ( )   and ( )Ind ⋅  is the 
indicator function. This choice offers is a flexible way to consider interactions 
between the covariates Z and the covariates X without a tight specification of 
such interactions at the model statement step. Moreover this framework allows 
the identification of subgroups of individuals with specific shape of CD4 varia-
tion over time. Finally the model that will be considered for the data analysis will 
be expressed as follows:  

( )( )2| , , ,tY X x Z z b N x z bI Iβ σ= = +             (1) 

where 

( ) ( )
1

K

k k
k

z Ind z Nβ β
=

= ∈∑                   (2) 

( )20, bb N σ                        (3) 

and ( )Ind ⋅  is the indicator function. This is a special case of vary-
ing-coefficient regression model [12]. 

3.2. Model Fitting Methods 

We chose a generalized linear mixed model (GLMM) conditional inference tree 
algorithm for tree construction [14]. It helps to overcome some instance insta-
bility and bias problems that are common in recursive binary tree models fitting 
[1] [15]. In brief, at each iteration, the algorithm combines the fixed-effect esti-
mation by a model-based partitioning algorithm (MOB) [2] with a linear mixed 
model random effect prediction. MOB is based on parameter instability tests 
[16]. Instability refers to a significant difference in coefficient estimates for two 
subsets of the dataset. The algorithm builds the tree after repetitions of the fol-
lowing steps: 
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GLMM tree algorithm stopping criterion is based on the linear mixed model 
log-likelihood denoted ( )l b . One strategy to fit the model to data is outlined in 
the following algorithm [14]: 
 

 
 

We used R package glmertree [14] for model fitting. 
We have looked for an optimal joint value of a minimal terminal node size 

(minsize) and a numeric significance level α  by using Bayesian Information 
Criterion (BIC). That model selection strategy avoids to choose arbitrary values 
for minsize and α . In our application, the linear mixed model includes two 
fixed-effects (Treatment and clinical visit index) and one random effect (patient 
ID). The covariates used to defined the subgroups are Age, Gender, Marital sta-
tus, baseline CD4 count, WHO clinical stage, the mode of entry into the active 
list, the history of opportunistic infection at ART initiation, the HIV type and 
Body Mass Index.  

3.3. Stability Analysis and Model Diagnostics 

Stability is an essential property of a fitted regression tree model. It ensures that 
the potential instability of the model is minimized and then the model use, as for 
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prediction task. A model stability can be assessed by fitting the model on data 
obtained by bootstrap resampling of the training dataset. Variables and cut-
points that were not selected by the original tree may be selected by replicate 
samples. Metrics for stability assessment include the relative variable selection 
frequency, the mean frequency of the variable selections per tree and the fre-
quency of each cutpoint over the trees [17]: 
 The relative variable selection frequency for a partitioning covariate mz , 

1, ,m q=   equals the total number of replicate trees that have selected mz  
at least once, divided by the total number of replicate trees.  

 The mean frequency of the covariate selections per tree for mz  is the total 
number of times mz  is selected for partitioning by a replicate tree over the 
repetitions, divided by the total number of replicate trees.  

 The relative frequency of a cutpoint ( )mc z  equals the total number of rep-
licate trees that have selected ( )mc z  to split the variable mz , divided by the 
total number of replicate trees.  

A covariate selection is stable if its average split count is close to its number of 
selections in the original tree and its frequency of selection is close to 100%. 
Graphical methods are used to analyze variable cutpoints’ variability. A histo-
gram is used to illustrate the cutpoint variability when the partitioning variable 
is numerical. It is expected that the cutpoints selected in the original tree have 
the highest frequencies (one or more peaks in the histogram). For an ordered 
categorical variable, a barplot is used to show the frequency of all possible split 
points. For an unordered categorical variable, a specific plot is used to visualize 
the partitions’ variability over the replicates. The same color is used for catego-
ries that belong to the same node. The combination of categories that corres-
ponds to a partition observed in the original tree is marked on the right side of 
the plot by a solid red line. In addition, two dashed lines enclose the area 
representing the partition. Number(s) on the right side of the area indicate the 
level(s) of the corresponding split(s) in the original tree. In conclusion, a split 
point is stable if it is selected by most replicate trees.  

We have implemented a non parametric bootstrap method for generalized li-
near mixed models [18] [19]. Mainly, the method consists of three steps. First, 
for all 1:i n= , we computed scalars *

ib  and *
i  by centering and scaling the 

predicted random variable îb  and the predicted random variable î  respec-
tively. Consider b  and e  the empirical means of ib  and ie . Denote  

( ) ( )
2 2*2 *2

1 1

1 1ˆ ˆand
n n

b i i
i i

b b e e
n n

σ σ
= =

= − = −∑ ∑             (4) 

the empirical variances of îb  and of îe  respectively. The marginal residuals 

îe  is also centered and scaled. we compute the predicted values *y  by replac-
ing îb  by * *

bbσ  and î  by * *σ   . Note that the two random variables follow a 
standard normal distribution. Thirdly, to obtain each bootstrap dataset, the re-
sponse y is replaced by a bootstrap of the predicted response *y .  

To study the plausibility of the model assumptions, we proceed in two steps. 

https://doi.org/10.4236/ojs.2019.96041


S. Tiendrébéogo et al. 
 

 

DOI: 10.4236/ojs.2019.96041 649 Open Journal of Statistics 

 

First, we computed the least confounded residuals [20] and assessed the normal-
ity assumption using quantile-quantile plot. Secondly, we evaluated the ho-
moscedasticity assumption by plotting predicted values against standardized 
conditional residuals. For this purpose, we wrote a R code for parametric 
bootstrap that account for fitted mixed model as add-on for the package stable 
learner [17] to realize the stability analysis of linear mixed model based recur-
sive binary tree. 

4. Results 

4.1. Identified Difference in Temporal Variation of CD4 Cell  
Counts with Respect to Interactions between Covariates 

Our model highlights seven subgroups of patients with different temporal varia-
tions of CD4 counts (Figure 1). The set of patients at an advanced disease stage 
(CD4 < 225) is the most splitted. It consists of at least four subgroups of chro-
nological increase of CD4 count. Baseline CD4 count is selected for the first 
split. It is the most correlated with the temporal variation of CD4 count. Baseline 
CD4 count is a predictor of sustained virologic response [21]. In the subgroup of 
patients with baseline CD4 count ≤ 73 cells/μl, Gender is the most correlated 
with the CD4 count variation. Female patients have a faster chronological in-
crease of CD4 counts than male patients ( 2

ˆ 1.02β =  and 2
ˆ 0.82β =  respectively).  

 

 
Figure 1. Conditional inference tree grown on the study dataset. CD4 count is the study outcome. Baseline CD4 count (in CD4), 
Gender (Genre) and Age were selected as splitting variables. P-value in each edge refers to the smallest p-value found in parameter 
instability tests. 
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Uptake and adherence to HIV services may explain this difference. In the sub-
group of patient with baseline CD4 counts between 73 cells/μl and 129 cells/μl as 
well as in the subgroup of patients with baseline CD4 counts between 129 cells/μl 
and 225 cells/μl, Age is correlated with CD4 count temporal variation. In these 
subgroups, patients with aged 34 years or below have a slightly higher chrono-
logical CD4 count increase compared with older patients. The variable Age se-
lection might be explained by what is called discordant immunological response, 
likely to happen among older patients [22]. Conversely, the group of patients 
with baseline CD4 count ≥ 225 cells/μl is homogeneous according to partioning 
rules.  

Table 2 shows a chronological increase of CD4 count on average in all sub-
roups ( 2 0β >  and -value 0.05p < ). This finding corroborates the fact that 
ART treatment aims to reduce the viral load and progressively to restore the 
immune system. The increase is faster for patients with an initially weakened 
immune system. On average the 2β  coefficient is small when baseline CD4 
count is large. In addition, the ratio ( )2 2 2ˆ ˆ ˆ 57.07%b bσ σ σ+ = . This shows that 
individual random effect is important in the analysis of CD4 cell counts time 
variation.  

Subgroups also differ by the difference in treatment response between patients 
treated with 2NRTI + 1NNRTI regimen and those treated with other ART regi-
mens (2 NRTI + IDV, 2 NRTI + LPV/r, 2 NRTI + NFV). It is commonly admit-
ted that there is no optimal treatment for all patients. Chronological CD4 count 
levels are higher for patients treated with 2NRTI + 1NNRTI than for those 
treated with other ART regimens group in the subgroup of patients with baseline 
CD4 count ≤ 129 and aged 34 and over as well as in the subgroups of patients 
with baseline CD4 counts between 129 cells/μl and 225 cells/μl (Figure 2). The 
difference in chronological CD4 count levels between ART regimens is highest  
 
Table 2. Summary of fixed-effects estimation. 

Subgroup 

Size 

Coefficient estimate (p-value) 

subgroup characteristics 
Intercept 

( 0β ) 
Other ART 

( 1β ) 
Previous visit 
index ( 2β ) 

Female and baseline CD4 ≤ 73 592 12.238 (0.000) −0.159 (0.543) 1.026 (0.000) 

Male and baseline CD4 ≤ 73 346 11.280 (0.000) −0.551 (0.088) 0.818 (0.000) 

Age ≤ 34 & 73 < baseline CD4 ≤ 129 381 15.008 (0.000) 0.037 (0.926) 0.864 (0.000) 

Age > 34 and 73 < baseline CD4 ≤ 129 422 13.952 (0.000) −1.945 (0.000) 0.792 (0.000) 

Age ≤ 34 and 129 < baseline CD4 ≤ 225 634 17.470 (0.000) −2.491 (0.000) 0.860 (0.000) 

Age > 34 and 129 < baseline CD4 ≤ 225 707 16.321 (0.000) −1.387 (0.000) 0.820 (0.000) 

Baseline CD4 > 225 377 19.653 (0.000) −0.134 (0.687) 0.611 (0.000) 

Residual variance: 2ˆ 8.204σ =  

Random effect variance: 2ˆ 10.908bσ =  
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Figure 2. Chronological increase of CD4 count in the subgroups identified by the model. Time is in 6-months time scale. (a)-(g) 
Time (semester). 

 
in patients aged 34 or younger and with baseline CD4 counts between 129 cells/μl 
and 225 cells/μl. In the remaining subgroups, we found no significant difference 
( 0.05p > ). 

4.2. Conditional Inference Tree Stability Assessment and Model  
Validation 

We performed the stability analysis with 500 bootstrap samples. Relative fre-
quencies of selecting baseline CD4 count, Gender, Age are all equal to 100% 
(Table 3 and Figure 3). Their mean frequency of selections per tree are respec-
tively equal to their selection frequency in the initial tree (Table 3). In addition, 
Figure 4 shows that all the bootstrap trees have splitted baseline CD4 count on 
the same levels as in the initial tree. Age is splitted at age 34 on level 3 as in the 
original tree. Similarly, Gender is splitted on level 3. Thus, baseline CD4 count, 
Gender and Age can be considered as stable. Most of the bootstrap trees (97.6%) 
and the original tree are identical (Figure 3). Finally, variable EntryMod need 
not be retained. It is only selected by 2.4% of bootstrap trees. To sum up, the fit-
ted tree is stable. Finally, Figure 5 and Figure 6 show that there is no evidence 
against normality and homoscedasticity assumptions respectively. 
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Figure 3. Frequencies of the different trees built over the repetitions. Dashed horizontal 
red lines mark the frequency of the original tree. It is enclosed by a solid vertical red line 
at the right of the plot. 
 

 
Figure 4. Stability of the cutpoints selection for partioning. Dashed vertical lines mark 
the original tree cutpoints. The number above a dashed vertical red line indicates the level 
at which the split occurred in the tree. For example, Age is splitted twice on level 3. For 
the categorical variable Gender, the split occurred between Male and Female on the level 
3 in the original tree. 

 

 
Figure 5. Quantile-quantile plot of standardized least confounded residuals. 
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Figure 6. Homoscedasticity assumption evaluation plot. 
 
Table 3. Variable selection overview. 

 
Relative frequency 

(%) 
Selected by 
initial tree 

Mean frequency of 
selections per tree 

Selections frequency 
in initial tree 

Gender 100.00 yes 1.000 1.00 

Age 100.00 yes 1.998 2.00 

baseline CD4 100.00 yes 3.00 3.00 

Entry Mod 2.40 no 0.024 0.00 

baseline BMI 0.20 no 0.00 0.00 

5. Discussion and Concluding Remarks 

In this study, we have analyzed data from a retrospective cohort of adults who 
started Antiretroviral Therapy at different centres between 2003 and 2007 in 
Burkina Faso. The results showed that the population of ART patients in Burki-
na Faso may be split into seven subgroups, according to the CD4 count variation 
over time. The number of the subgroups indicates that this population is hete-
rogeneous as regards treatment response. This feature is particularly pro-
nounced among advanced infected patients (CD4 < 225). The high proportion of 
patients (83%) in this condition may partly explain this finding. Gezie et al. [24] 
found Age as a predictor of CD4 counts over time in Ethiopia. Younger age was 
positively correlated to CD4 count increase during the course of treatment. But 
no cutpoint was provided to allow a comparison with our finding.  

On average, we have observed an increase of CD4 counts in all subgroups. 
This finding confirms the benefit of ART treatment whatever the patients’ health 
conditions. However, CD4 counts do not recover a normal value when ART is 
started at a low baseline CD4 count [25] [26]. In addition, we found that the in-
crease is lower among patients with greater baseline CD4 counts. Garcia et al. 
reported that the lower increase was not observed when it was adjusted by viral 
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load at last determination [21]. This study reveals that female patients have a 
faster increase than male patients. This can be explained by representations of 
masculinity in Burkina Faso that could lead to late presentation and poor com-
pliance with treatment [27] [28]. 

Another finding of this study is that there are differences in treatment re-
sponse between patients treated with 2 NRTI + 1 NNRTI regimen and those 
treated with other ART regimens (2 NRTI + IDV, 2 NRTI + LPV/r, 2 NRTI + 
NFV) in the groups of patients with baseline CD4 between 73 and 225. The dif-
ferences could be related to a better adherence to ART regimen in the sub-
groups. Protease inhibitors are expected to be more effective than 1 NNRTI. But 
tolerance to treatment may explain why they are less effective. 

Abrogoua et al. [29] have also shown a heterogeneity in the population of pa-
tients under ART in Cote d’Ivoire. Their study identified four and fourteen CD4 
counts variation subgroups in two samples of ARV-treated patients enrolled in a 
clinical trial between 2006 and 2007 and followed for two years in Cote d’Ivoire. 
The samples included 87 nevirapine treated patients and 164 efavirenz treated 
patients respectively. Age, sex, weight, Karnofsky’s score, haemoglobin, occur-
rence of an opportunistic infection were used for CD4 cell counts modeling. Un-
like Abrogoua et al. [29], we studied 3459 HIV infected patients followed up to 
five years in routine clinical practice. In addition, we included the treatment re-
gimen in the model.  
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