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Abstract 

This paper mainly addresses maximum likelihood estimation for a re-
sponse-selective stratified sampling scheme, the basic stratified sampling 
(BSS), in which the maximum subsample size in each stratum is fixed. We 
derived the complete-data likelihood for BSS, and extended it as a full-data 
likelihood by incorporating incomplete data. We also similarly extended the 
empirical proportion likelihood approach for consistent and efficient estima-
tion. We conducted a simulation study to compare these two new approaches 
with the existing estimation methods in BSS. Our result indicates that they 
perform as well as the standard full information likelihood approach. Me-
thods were illustrated using a growth model for fish size at age, including 
between-individual variability. One of our major conclusions is that the fully 
observed BSS data, the partially observed data used for stratification, and the 
sampling strategy are all important in constructing a consistent and efficient 
estimator.  
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1. Introduction 

In stratified random sampling (SRS), the population or a random sample of the 
population is partitioned into relatively homogeneous subgroups, or strata, and 
then random samples are taken independently in each stratum for full observa-
tion. Such sampling design may also be regarded as a kind of two-phase sam-
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pling, with the population or the large sample before partitioning being the first 
phase sample, and the smaller and more extensive subsamples after partitioning 
being the second phase samples. 

Practical implementations of SRS frequently fall into two categories as classi-
fied by [1]: 1) basic stratified sampling (BSS) where the maximum second phase 
subsample size (BSS1) or subsampling fraction (BSS2) in each stratum is pre-
fixed, and 2) variable probability sampling (VPS) in which sequential units are 
independently generated from a model and then classified into strata where they 
are selected for full observation with pre-specified probabilities. [2] classified 
BSS2 as VPS, and hence all the inference methods for VPS are also suitable for 
BSS2. 

Assume that there are a total of N sampling units on which the stratified sam-
pling is conducted. Let iy  and ix , 1, ,i N=  , denote respectively the vectors 
of responses and covariates of the ith individual generated from the joint distri-
bution ( ) ( ) ( ), | | ;f g h=y x y x xθ θ , with θ  being a vector of all the para-
meters describing the conditional distribution of y  given x . In SRS ( ),y x  
are fully observed only for a subset of size n of the N units, which are called 
complete data in this paper, and only a subset z  of ( ),y x  is observed for the 
other N n−  units, which are called incomplete data. 

In SRS the unobserved elements of y  and/or x  are missing data, and mis-
singness can be fully accounted for by variable z  which is observed for all the 
N units; that is, the unsampled variables are missing at random (MAR) in the 
terminology of [3]. In addition, for BSS and VPS, given the observed data, the 
missing probability for all the missing data is a constant involving no parameters 
θ . As a result, the likelihood, which is called full information likelihood, is giv-
en by (see e.g. [1]) 

( ) ( ) ( )
1 1

, | | ,
n N

F i i i
i i n

L f u
= = +

   =       
∏ ∏y x zθ θ θ               (1) 

where ( )|u z θ  is the density function of z , 1, ,i n=   enumerates the 
second phase complete data, and 1, ,i n N= +   enumerates the first phase in-
complete data. 

If the response y  is not involved in the stratification, namely, vector z  
contains no elements of vector y , ( ) ( )|u u=z zθ  is independent of parame-
ters θ , and the full likelihood ( )FL θ  reduces to ( )1 | ;n

i ii g
=∏ y x θ , which is 

trivial since neither the sampling scheme nor the covariate distribution ( )h x  
needs to be taken into account. In this paper we consider only the SRS where the 
response y  is involved in stratification, which is often referred to as re-
sponse-selective stratified sampling (RSSS). 

In fisheries surveys, length-stratified age sampling (LSAS) is one of the most 
popular strategies for sampling the age distribution of a fish population. In the 
first phase of LSAS a large amount of caught fish of a certain species is measured 
for length, and classified into length strata (e.g. two centimeters, five centime-
ters). In the second phase a pre-specified small number of fish are randomly se-
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lected from each stratum for age measurement. LSAS is BSS, and since growth 
models generally describe how length increases as a function of age (i.e. length is 
the response and age is the covariate), it is response-selective. LSAS has been 
conducted world-wide for several decades. For example, the Canadian Depart-
ment of Fisheries Oceans (DFO) conducts annual surveys since the 1970’s and 
uses LSAS for age sampling for many species such as cod and American plaice. 
Millions of length-at-age data have been accumulated for each species, which are 
invaluable for fisheries stock assessment and ocean ecosystem studies. In this 
paper we focus on BSS, with some of the methods and conclusions also applica-
ble to VPS. 

[4] suggested to model the age distribution of fish in a survey using the Gam-
ma distribution. [5] also assumed a Gamma age distribution in their hierarchical 
model of growth for many fish populations, and they showed that parameter es-
timates did not change much when a more flexible parametric age distribution 
was used. [6] showed that a flexible Normal mixture distribution for age distri-
bution is more robust to misspecification of the age distribution. Following these 
studies, in this paper we focus on the case where a valid parametric covariate 
distribution model is available. For the examples in the simulation studies and 
real data analysis, we simply use a Gamma distribution for age so that our com-
parison among various inference approaches is less influenced by numerical is-
sues related to integrating over a complicated covariate distribution. 

This is the motivation of this paper. [1] and [7] gave the complete-data like-
lihood for VPS, which is based solely on the second phase complete data and can 
be used when the information is not retained for units not selected for full ob-
servation. In this study we would like to derive a likelihood function for BSS re-
quiring only the second phase complete data and the total sample size N, which 
can be used when the first phase BSS data is not available. Some authors ([e.g. 
[8]) applied a pseudoconditional likelihood approach [1] to LSAS data. We im-
proved this approach to accommodate the first phase incomplete data and the 
complexities in fisheries LSAS. We conducted simulation studies to compare the 
new and existing likelihood and pseudolikelihood approaches that have been 
used or are conveniently applicable to fisheries LSAS. Our purpose is to identify 
the approaches with the best performance. 

The outline of this paper is as follows. In Section 2 we define notations and 
review the likelihood and pseudolikelihood approaches relevant to this study. In 
Section 3 we derive the complete-data density function, complete-data likelihood 
and full-data likelihood for BSS. Application of an empirical proportion ap-
proach, which is an improved version of the pseudoconditional likelihood ap-
proach, to BSS is explored in Section 4. Results from simulation studies based on 
a linear model with between-individual (BI) variation and a Von Bertalanffy 
growth model with BI variation are presented in Section 5 to compare the per-
formance of all these new and existing estimators discussed in this paper. The 
most promising estimators are then further illustrated in Section 6 by fitting the 
VonB model with BI variation to growth data for American plaice (Hippoglos-
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soides platessoides) collected by DFO. Some further discussions are provided in 
Section 7. 

2. Notation, Likelihoods and Pseudolikelihoods 

Suppose that N units ( ), , 1, 2, ,i i i N=y x 
, are generated from the joint distri-

bution ( ), |f y x θ . As mentioned previously we always assume that an appro-
priate parametric covariate distribution is available, then θ  here includes not 
only the parameters describing conditional distribution of response y  given 
covariate x , but also the parameters defining the covariate distribution. The 
range of ( ),y x  is divided into H exhaustive and mutually exclusive strata 

1 2, , , HS S S . Denote the probability for ( ),y x  to fall into the hth stratum as 
( )hQ θ , namely,  

( ) ( ){ }Pr , .h hQ S= ∈y xθ                     (2) 

Define the indicator variable  

( )
( )

1, if , is fully observed,
0, if some information on , is missing.

i i
i

i i

R
= 


y x
y x

         (3) 

Because BSS2 can be classified as VPS [2], in the following we use BSS specially 
for BSS1. For BSS we assume that in each stratum hS  there are hN  units from 
which h hn m≤  units are randomly selected for full observation of ( ),y x , with 

1
H

hhN N
=

= ∑  and 1
H

hhn n
=

= ∑ . For the remaining h hN n−  units the values of 
( ),y x  are only partially observed for a subset z . Here hm  is the maximum 
sample size for full observation and  

, if ,
, if .

h h h
h

h h h

N N m
n

m N m
<

=  ≥
                     (4) 

Although the likelihood for BSS (4) is given by (1), several published studies use 
other likelihoods, and some of these are described as follows. 

[9] studied maximizing the likelihood function ( ): 1 | , 1;
i c i i ii R f R
=

=∏ y x θ  
for fitting regression models, and called this approach the conditional maximum 
likelihood. Under the assumption that a valid parametric covariate distribution 
is available, and the randomness in hn  can be neglected for all the strata so that 
the hn  in (4) are always equal to hm  in all strata, in the Appendix we show 
that  

( ) ( )
( ) ( )

, |
, | 1; if , ,

i
i

i i
c i i i i i h

h

f
f R S

Q
= ∝ ∈

y x
y x y x

θ
θ

θ
         (5) 

and the constant of proportionality does not depend on θ . The conditional li-
kelihood then becomes  

( ) ( )
( ): 1

, |
,

i i

i i
c

i R h

f
L

Q=

= ∏
y x θ

θ
θ

                    (6) 

which is adopted in [10] and [11]. 
Weighted pseudo-likelihood estimators have been studied extensively since 
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the 1980’s for problems involving response-selective sampling. For this topic we 
refer to [12]-[18]. In the most basic and popular version of this approach, the 
log-likelihood function if all the N units were fully observed, ( )1ln , |N

i ii f
=∑ y x θ  

with ln denoting natural logarithm, is estimated by the Horvitz-Thompson (HT) 
method based on the n units that are actually observed in full,  

( ) ( )
1 1

ln , | .
hnH

h
w i i

h ih

N
l f

n= =

= ∑ ∑ y xθ θ                  (7) 

Although this weighted log-pseudo-likelihood (7) may provide an unbiased pa-
rameter estimating equation, the HT approach is known to be inefficient, and 
can be seriously so in some situations such as when the sample unit values are 
not approximately proportional to the inclusion probabilities ([19]; [20], page 
103-104). 

An approach for addressing this inefficiency issue is to adjust the standard HT 
weights by using the whole set of incomplete data, namely, those with only a 
subset of ( ),y x  measured but available for all the N sample units (see e.g. [17] 
[18] [21]). We call this method the calibrated weighted likelihood approach. As 
an implementation of the calibrated weighted likelihood approach, in this study 
we modified the traditional Horvitz-Thompson weights by minimizing the 
chi-squared distance (see Equation (1.1) in [21]) between the original and mod-
ified weights subject to the constraint  

1 1
,

N N

i i i i
i i

R w y y
= =

=∑ ∑                        (8) 

where iw  are the modified weights. Similarly one can also calibrate up to high-
er order moments or calibrate the empirical distributions by imposing the con-
straints  

1 1
,

j i j i

N N

j j y y y y
j j

R w ≤ ≤
= =

=∑ ∑1 1                     (9) 

where i enumerates all the subjects selected for full observation, and 1
j iy y≤ =1  

if j iy y≤  and 0 otherwise. Nevertheless, these calibration strategies may not 
produce better estimates than (8) does, according to our simulation studies. 
Hence, in this paper we only report results with constraint (8). The calibrated 
weighted likelihood approach under all these constraints can be conveniently 
implemented with Equation (9) in [17]. 

In some applications (e.g. [8]) researchers use an approximate density based 
on variable probability sampling (VPS). In VPS, units are randomly selected for 
full observation from the hN  partially observed units, with subsampling prob-
abilities hγ  that vary for each stratum h. The density approximation is based 
on the empirical subsampling probability ˆh h hn Nγ =  (see Equation (2) in [2]), 

( ) ( )
( )

1

, |
, | BSS; , | VPS; .

h

h
H

h
h

h h

n f
N

f f
n Q
N

′
′

′= ′

≈ =

∑

y x
y x y x

θ
θ θ        (10) 
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Parameters are estimated based on the likelihood function defined from (10). 
Note that with the availability of a valid covariate distribution, a density function 
similar to (10) can also be constructed for the N n−  incomplete observations 
(i.e. those partially observed units). In LSAS there are always some empty strata 
with 0hN =  but non-negligible occupation probability hQ , which are missing 
in the denominator of (10). We will address these issues in Section 4 and call the 
improved likelihood the “empirical proportion (EP) likelihood”. 

3. Complete-Data Likelihood for BSS 

As mentioned previously, the methods for VPS are applicable to BSS2, and the 
complete-data likelihood for VPS is given in [1] and [7]. Therefore in this sec-
tion we only consider BSS1 and refer to BSS1 as BSS for convenience. 

We denote ( )dbin , ,x N p  and ( )pbin , ,x N p  respectively as the binomial 
probability mass function and cumulative probability, with number of successes 
x, total number of events N and success probability p. The density function for a 
unit selected for full observation in BSS is denoted as ( )BCf ⋅  with “BC” indi-
cating “BSS complete data”.  

Theorem 1. In BSS the density function of a unit ( ),y x  selected for full ob-
servation is given by  

( ) ( )

( ) ( )

( ) ( )

1

1

1

1 1

, |
, | 1;

dbin , , 1 pbin 1, ,

dbin , , 1 pbin 1, ,

h

h

h

h

BC
h

m

h h h h h h
N

mH

h h h h h h
h N

f
f R

Q

N N N Q m m N Q

N N N Q m m N Q
′

′

−

=

−

′ ′ ′ ′ ′ ′
′= =

= =

 
 + − −   

 ×
    + − −    
   

∑

∑ ∑

y x
y x

θ
θ

    (11) 

if ( ), hS∈y x . 
The proof of Theorem 1 is given in the Appendix. As suggested in [9], [10], 

[22] and [23], the BSS complete-data (BC) likelihood can be constructed as  
( )

: 1
, | 1; .

i

BC BC i i i
i R

L f R
=

= =∏ y x θ                    (12) 

With the same arguments for deriving (11), the density function for the par-
tially observed units is  

( ) ( ) ( ) ( )

( ) ( )

1

1 1

dbin , ,
|

| 0; ,
dbin , ,

h h

h h

N

h h h h
N m

BI H N
h

h h h h
h N m

N m N N Q
f

f R
Q

N m N N Q
′ ′

= +

′ ′ ′ ′
′= = +

−
= = ×

  − 
  

∑

∑ ∑

z
z

θ
θ  (13) 

where the subscript “BI” denotes “BSS incomplete data”. The summations in 
(13) may be calculated more efficiently using 

( ) ( )

( ) ( )

1

=1

dbin , ,

dbin , , 1 pbin , , .

h h

h

h

N

h h h h
N m

m

h h h h h h h
N

N m N N Q

NQ N N N Q m m N Q

= +

−

 = − − − 

∑

∑
       (14) 
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Densities (11) and (13) incorporate respectively the information of complete 
data and incomplete data. We anticipate that they together can lead to better in-
ference than using only complete data. The BSS full-data (BF) likelihood is  

( ) ( ) ( )
1 1 1

, | 1; | 0; .
h h

h

n NH

BF BC i i i BI i i
h i i n

L f R f R
= = = +

  
= = =  

   
∏ ∏ ∏y x zθ θ θ    (15) 

Here and in the remainder of this paper, we enumerate the fully observed units 
in the hth stratum as 1, , hn , and the partially observed units in the same stra-
tum as 1, ,h hn N+  . 

In some cases only the number of incomplete measurements, ( )h hN n− , in 
each stratum are known, instead of the measured values of all iz ’s. In this situa-
tion we need to integrate out z  in (13) and rewrite the likelihood function (15) 
as  

( ) ( )

( ) ( )

( ) ( )

1 1

1

1 1

, | 1;

dbin , ,
.

dbin , ,

h

h h

h h

h h

nH

BF BC i i i
h i

N n
N

h h h h
N m

H N

h h h h
h N m

L f R

N m N N Q

N m N N Q
′ ′

= =

−

= +

′ ′ ′ ′
′= = +

 
= = 

 

 
− 

 ×    − 
    

∏ ∏

∑

∑ ∑

y xθ θ

          (16) 

In real data analysis it is important to examine residuals for the fitted model to 
assess the validity of assumptions. Equation (11) gives the density function for 
BSS complete data, and can be used to calculate residuals. For simplicity we as-
sume response y  to be univariate y. Define the density function of x  condi-
tional on 1R =  as 

( ) ( )| 1; , | 1; dBC BCh R f y R y= = =∫x xθ θ .  

( )
( )
( )
, | 1; d

E | , 1 ,
| 1;

BC

BC

yf y R y
y R

h R
=

= =
=

∫ x
x

x
θ

θ
 

( ) ( )
( )

2
2

, | 1; d
E | , 1 ,

| 1;
BC

BC

y f y R y
y R

h R
=

= =
=

∫ x
x

x
θ

θ
 

( ) ( ) ( ) 22Var | , 1 E | , 1 E | , 1 .y R y R y R= = = − =  x x x  

The standardized residual for the ith observation ( ),i iy x  is  

( )
( )

E | , 1
.

Var | , 1
i i

i

y y R

y R

− =

=

x

x
                      (17) 

The measured data such as length and age are usually discrete, and the above in-
tegrations become summations, which are easier to evaluate.  

4. Application of Empirical Proportion Approach to BSS 

In this section we expand density (10) for application in BSS and especially in 
LSAS. 

https://doi.org/10.4236/ojs.2019.96040


N. Zheng, N. Cadigan 
 

 

DOI: 10.4236/ojs.2019.96040 630 Open Journal of Statistics 

 

Empty strata ( 0hN = ) always happen with LSAS. For the empty strata in (10), 
the empirical selection proportions ( )0 0h hn N =  are not defined. We need to 
assign selection probabilities for full and incomplete observations to those un-
observed strata. In VPS these selection probabilities may be determined by the 
maximum likelihood method [10]. For sampling model (4), when h hN m≤ , all 
the individuals in the hth stratum are selected for full measurement; hence, logi-
cally the empirical selection probability is 1 when 0h hN m= < . We assume that 
in unobserved strata the probability for full observation is 1, and the probability 
for incomplete observation is 0. Hence, the empirical proportion (EP) density of 
the complete data with ( ),y x  fully measured is given by  

( )
( )

EP

1 1

, |
, | 1; = .

obs total

obs

h

h
H H

h
h h

h h Hh

n f
N

f R
n Q Q
N

′
′ ′

′ ′= = +′

=
+∑ ∑

y x
y x

θ
θ            (18) 

Here 1, , obsh H=   enumerate the strata with data observed, and 
1, ,obs totalh H H= +   enumerate the strata without data. totalH  is the total 

number of strata with nonnegligible occupation probabilities hQ  (see Equation 
(2)). 

Similarly, we can include information from the incomplete observations using 
their EP density,  

( )
( )

EP

1

|
| 0; .

obs

h h

h
H

h h
h

h h

N n f
N

f R
N n Q

N
′ ′

′
′= ′

−

= =
−∑

z
z

θ
θ                 (19) 

Here, without loss of generality, we assume that z  falls in the hth stratum. For 
an unobserved stratum h, since we have defined its proportion for full observa-
tion 1h hn N = , its proportion for partial observation ( ) 0h h hN n N− = . The 
EP likelihood function then has the form  

( ) ( ) ( )EP EP EP
1 1 1

, | 1; | 0; .
h h

h

n NH

i i i i i
h i i n

L f R f R
= = = +

  
= = =  

   
∏ ∏ ∏y x zθ θ θ      (20) 

If only the number of incomplete observations in each stratum is reported 
without knowing the z  values, z  in (19) needs to be integrated out and the 
likelihood (20) becomes  

( ) ( )EP EP
1 1

1

, | 1; .

h h

h

obs

N n

nH
h

i i i H
h i h h

h
h h

Q
L f R

N n Q
N

−

= = ′ ′
′

′= ′

 
    = =   − 
 
 

∏ ∏
∑

y xθ θ      (21) 

5. Simulation Study 

In this section we examine the performance of the inference approaches for BSS 
described in the previous sections. We use two simple examples: a linear model 
with between individual (BI) variation, and a nonlinear Von Bertalanffy (VonB) 
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growth model with BI variation. The simulation setup is as follows.  

5.1. Linear Model with BI Variation 

The linear model with BI variation is  

,Y a B X ε= + +                        (22) 

where ( )2,b bB N µ σ , ( )2,x xX N µ σ  and ( )20,N εε σ . Capital letter B 
denotes the random effect of BI variation. We randomly generated 5000N =  
( ),i ix y  pairs, 1, ,i N=  , from model (22). The parameters of the model were 
chosen as 0.5a = , 0.2,0.5bµ =  and 1.0, 1.0bσ = , 1.0xµ = , 5.0xσ = , and 

0.7εσ = . Here we selected a small intercept a  so that the issues with the rela-
tive performance in its estimation as defined by (25) can be clearly seen. Slope is 
an important parameter in linear model. Hence we selected small, moderate and 
large values for its mean bµ  and a relatively large standard deviation (SD) bσ  
to test different approaches in identifying the slope under various situations. The 
mean xµ  and SD xσ  for covariate X are chosen so that the spread of the co-
variate allows reasonable estimates of the model parameters. We adopted a 
moderate error SD ( εσ ) relative to the other parameters. We stratified the data 
by length (Y) bins of size 2 and randomly selected a maximum of 15 units per 
length stratum to keep their X values, and dropped the X values of the other 
units not selected. This sampling design is close to the LSAS of fishery surveys 
that we would like to address in this study. 

5.2. VonB Growth Model with BI Variation 

The VonB model is a commonly used growth model in fisheries science (e.g. 
[24]). The basic VonB model is given by  

( ) ( )( )01 e ,k a ay a l − −
∞= −                     (23) 

where ( )y a  denotes length at age a , l∞  is the maximum possible size (as 
a →∞ ), k is the growth rate parameter, and ( )0 0a <  is the theoretical age at 
which the fish would have had zero length. Variation in growth is also important 
for population and community dynamics (e.g. [25]). Not accounting for indi-
vidual variation in growth may lead to bias in estimating the population mean 
growth parameters and length at age, as noted by [26] and [27]. The VonB mod-
el with BI variation follows [11],  

( ) ,Y Aµ ε= +                         (24) 

where Y is the measured length, ( ) ( )( )01 e k A aA lµ − −
∞= − , ( ),A Gamma α β

 
and ( )( )2

0, CVN Aε µ×   . The error ε  here in fact includes both BI varia-
tion and Y observation error. 

We randomly generated 5000N =  ages from a gamma distribution with 
Case 1: ( ) ( ), 3.643,1.225α β = , and Case 2: ( ) ( ), 11.227,0.641α β = . α  and 
β  are determined by matching the mean αβ=  and 2variance αβ=  with 
those of the age data for American plaice that we have been investigating. Case 1 
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represents a younger population with mean age = 4.46 and variance = 5.47, while 
case 2 represents an older population with mean = 7.20 and variance = 4.61. 
Case 1 has a broad age distribution close to the origin, and case 2 has a narrower 
distribution of ages. Lengths were then generated from model (24) with 

70l∞ = , 0.2k = , 0 0.07a = −  and CV 0.2= . We stratified the data by length 
classes of size 2 and randomly sampled a maximum of 15 units per length stra-
tum to keep their ages and dropped all the other ages not selected.  

5.3. Estimation Performance 

Relative biases (RBias), relative standard errors (RSE), and relative square root 
mean squared errors (RRMSE) are defined as 

Estimate True value Standard errorRBias 100 , RSE 100 ,
True value True value

MSEand RRMSE 100 .
True value

−
= × = ×

= ×
   (25) 

We derived these values using 500 simulations for the full information likelih-
ood (1), conditional likelihood (6), weighted likelihood (7), calibrated weighted 
likelihood, complete-data likelihood (12), full-data likelihood (15), and EP like-
lihood (20) (see Tables 1-4). We also include the “random approach” based on 
maximizing the likelihood  
 
Table 1. Relative bias (RBias), relative standard error (RSE) and relative square root 
mean squared error (RRMSE) of the estimates from various approaches for the 
parameters in the linear model with BI variation (22). 0.2bµ = . 

Method 
Value a  xµ  xσ  bµ  bσ  εσ  

True value 0.5 1.0 5.0 0.2 1.0 0.7 

Random RBias −21.09 151.91 59.57 166.77 62.92 1.12 

 RSE 57.27 46.18 4.36 114.88 12.22 22.28 

 RRMSE 60.98 158.76 59.73 202.44 64.09 22.29 

Weighted RBias 2.62 −0.37 −0.92 1.05 1.28 1.70 

likelihood RSE 35.26 40.68 4.70 42.28 5.57 34.06 

 RRMSE 35.33 40.64 4.79 42.25 5.71 34.06 

Calibrated RBias 2.64 −0.40 −0.94 1.37 1.12 2.10 

weighted RSE 34.69 40.76 4.71 40.99 5.40 34.09 

likelihood RRMSE 34.75 40.72 4.80 40.97 5.51 34.12 

Complete RBias −0.63 0.81 0.21 1.86 0.97 8.15 

data RSE 42.85 19.48 2.43 25.45 5.11 36.34 

likelihood RRMSE 42.81 19.48 2.44 25.49 5.20 37.20 

Conditional RBias −4.23 11.83 4.83 15.94 7.46 1.77 

likelihood RSE 50.38 32.66 10.30 56.97 16.11 35.53 

 RRMSE 50.51 34.70 11.37 59.10 17.74 35.54 
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Continued 

Full RBias 0.39 −0.59 −0.28 2.01 0.48 5.38 

information RSE 8.19 17.51 2.18 18.55 2.42 15.17 

likelihood RRMSE 8.19 17.51 2.20 18.64 2.47 16.09 

Full RBias 0.45 −0.80 −0.31 0.53 0.38 6.95 

data RSE 8.18 18.46 2.23 17.85 2.38 12.39 

likelihood RRMSE 8.18 18.46 2.25 17.84 2.41 14.20 

Empirical RBias 0.40 −0.17 −0.07 1.49 0.63 5.89 

proportion RSE 8.16 17.60 2.14 17.56 2.36 13.54 

likelihood RRMSE 8.16 17.58 2.14 17.61 2.44 14.75 

 
Table 2. Relative bias (RBias), relative standard error (RSE) and relative square root 
mean squared error (RRMSE) of the estimates from various approaches for the 
parameters in the linear model with BI variation (22). 0.5bµ = . 

Method 
Value a  xµ  xσ  bµ  bσ  εσ  

True value 0.5 1.0 5.0 0.5 1.0 0.7 

Random RBias −41.24 107.64 60.66 129.62 41.67 14.14 

 RSE 51.92 38.29 3.85 33.70 9.09 40.43 

 RRMSE 66.26 114.24 60.78 133.92 42.65 42.79 

Weighted RBias −0.72 −1.06 −0.33 1.04 0.53 6.20 

likelihood RSE 36.76 36.52 4.76 16.49 5.85 35.00 

 RRMSE 36.73 36.50 4.76 16.51 5.86 35.51 

Calibrated RBias −0.88 −1.21 −0.33 0.78 0.62 6.30 

weighted RSE 36.57 36.50 4.76 16.61 5.92 34.92 

likelihood RRMSE 36.54 36.48 4.77 16.61 5.95 35.45 

Complete RBias −4.57 0.78 0.05 1.44 0.32 13.51 

data RSE 43.66 20.01 2.24 10.91 3.54 36.62 

likelihood RRMSE 43.86 20.01 2.24 11.00 3.55 39.00 

Conditional RBias −7.44 7.24 3.61 9.55 4.38 9.46 

likelihood RSE 51.36 31.37 8.80 25.79 11.16 35.94 

 RRMSE 51.85 32.16 9.51 27.48 11.97 37.13 

Full RBias 0.21 −0.28 −0.36 0.60 0.28 6.46 

information RSE 8.64 13.99 2.02 7.77 2.48 17.49 

likelihood RRMSE 8.63 13.98 2.05 7.78 2.49 18.63 

Full RBias 0.14 0.35 −0.35 0.09 0.28 8.40 

data RSE 8.77 14.70 2.07 7.26 2.52 13.75 

likelihood RRMSE 8.77 14.69 2.09 7.25 2.53 16.10 

Empirical RBias 0.15 −0.04 −0.21 0.56 0.56 7.13 

proportion RSE 8.67 13.93 2.00 7.43 2.58 15.72 

likelihood RRMSE 8.66 13.92 2.01 7.45 2.64 17.25 
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Table 3. Relative bias (RBias), relative standard error (RSE) and relative square root 
mean squared error (RRMSE) of the estimates from various approaches for the 
parameters in the linear model with BI variation (22). 1.0bµ = . 

Method 
Value a  xµ  xσ  bµ  bσ  εσ  

True value 0.5 1.0 5.0 1.0 1.0 0.7 

Random RBias −31.90 43.42 61.46 82.91 7.43 55.62 

 RSE 45.04 29.58 3.26 7.43 7.33 59.65 

 RRMSE 55.16 52.52 61.54 83.24 10.43 81.51 

Weighted RBias 1.98 −1.41 −0.22 −0.04 0.43 11.26 

likelihood RSE 36.03 29.21 3.95 7.36 5.68 32.18 

 RRMSE 36.05 29.21 3.95 7.35 5.69 34.06 

Calibrated RBias 1.80 −1.34 −0.21 −0.19 0.41 11.47 

weighted RSE 36.36 29.04 3.95 7.48 5.80 32.11 

likelihood RRMSE 36.37 29.04 3.95 7.47 5.81 34.06 

Complete RBias −1.18 −0.90 0.24 −0.05 0.45 16.00 

data RSE 40.32 21.51 2.11 6.21 3.38 34.70 

likelihood RRMSE 40.30 21.50 2.12 6.21 3.40 38.18 

Conditional RBias −0.57 3.15 2.35 3.87 1.44 13.30 

likelihood RSE 45.82 41.49 5.92 11.87 5.37 34.77 

 RRMSE 45.78 41.57 6.37 12.47 5.55 37.20 

Full RBias 1.10 −0.60 0.05 −0.70 0.70 9.32 

information RSE 11.84 11.51 2.07 4.40 2.80 22.27 

likelihood RRMSE 11.88 11.52 2.07 4.45 2.89 24.13 

Full RBias 0.98 −0.41 0.02 −0.84 0.64 13.05 

data RSE 12.32 12.70 2.02 3.88 2.76 16.76 

likelihood RRMSE 12.35 12.70 2.02 3.97 2.83 21.23 

Empirical RBias 1.17 −0.55 0.25 −0.52 0.87 10.02 

proportion RSE 11.93 11.61 1.96 4.10 2.83 20.90 

likelihood RRMSE 11.97 11.61 1.97 4.13 2.95 23.16 

 

( )
1

, |
n

R i i
i

L f y x
=

=∏ θ                      (26) 

as a reference point to see the difference between considering BSS and totally 
ignoring BSS. 

For the linear model with BI variation (22), Tables 1-3 indicate that the full 
information, full-data and EP likelihood approaches have quite close perfor-
mance, and in general they perform substantially better than all the other ap-
proaches in terms of RBias, RSE and RRMSE for all estimated parameters. The 
weighted likelihood (WL) and calibrated WL approaches have close perfor-
mance, and there is no evidence that calibration improves the estimation; that is,  
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Table 4. Relative bias (RBias), relative standard error (RSE) and relative square root mean squared error (RRMSE) of the estimates 
from various approaches for the parameters in the VonB model with BI variation (24). Case 1: ( ) ( ), 3.643,1.225α β = . Case 2: 

( ) ( ), 11.227,0.641α β = . 

Method Value 
Case 1 Case 2 

l∞  k 0a  CV l∞  k 0a  CV 

 True value 70 0.2 −0.07 0.2 70 0.2 −0.07 0.2 

Random RBias 86.06 −60.83 −614.61 20.35 88.00 −61.04 −23.60 35.79 

 RSE 15.45 4.31 77.73 3.40 34.09 9.72 495.95 4.13 

 RRMSE 87.44 60.98 619.49 0.21 94.36 61.81 496.01 0.36 

Weighted RBias 9.27 −21.41 −564.69 6.38 2.69 −6.53 −525.27 0.64 

likelihood RSE 5.26 6.52 96.69 3.15 7.47 20.66 991.37 2.35 

 RRMSE 10.66 22.38 572.89 0.07 7.93 21.64 1121.06 0.02 

Calibrated RBias 9.27 −21.41 −564.69 6.38 2.69 −6.53 −525.27 0.64 

weighted RSE 5.26 6.52 96.69 3.15 7.47 20.66 991.37 2.35 

likelihood RRMSE 10.66 22.38 572.89 0.07 7.93 21.64 1121.05 0.02 

Complete RBias 10.41 −26.13 −640.04 9.48 1.91 −5.97 −469.93 0.35 

data RSE 5.47 6.47 88.99 2.55 5.36 16.71 754.74 2.23 

likelihood RRMSE 11.76 26.92 646.19 0.10 5.68 17.73 888.44 0.02 

Conditional RBias 12.82 −31.22 −619.49 28.21 30.96 54.24 −659.63 31,525.17 

likelihood RSE 31.78 17.67 106.90 14.50 116.24 1536.62 1001.56 703,564.57 

 RRMSE 34.24 35.86 628.63 0.32 120.18 1536.04 1198.43 7035.67 

Full RBias 1.59 −12.76 −523.58 11.26 1.34 −5.51 −399.94 0.60 

information RSE 2.92 4.33 64.60 2.44 3.93 11.79 543.65 1.75 

likelihood RRMSE 3.32 13.47 527.54 0.12 4.14 13.01 674.48 0.02 

Full RBias −2.07 −8.44 −513.17 16.92 1.30 −5.20 −396.57 0.56 

data RSE 3.14 4.72 98.26 3.60 4.40 12.60 572.79 1.81 

likelihood RRMSE 3.76 9.67 522.47 0.17 4.59 13.62 696.20 0.02 

Empirical RBias 1.68 −12.89 −524.59 11.30 1.43 −5.64 −396.78 0.71 

proportion RSE 2.92 4.33 65.55 2.45 3.95 11.82 544.41 1.76 

likelihood RRMSE 3.37 13.59 528.66 0.12 4.20 13.08 673.22 0.02 

 
in some cases the calibrated WL has a little smaller RRMSEs than WL, and in the 
other cases the reverse happens, but the differences have no clear pattern, and 
are too small to draw reliable conclusions. Similarly, even though there is some 
difference in performance between the complete-data likelihood approach and 
the two WL approaches, it is not clear which method performs better. The two 
WL approaches have smaller RRMSEs for a  and εσ  estimation, while the 
complete-data likelihood approach has smaller RRMSEs for other parameter es-
timation. The conditional likelihood approach based on (6) performs the worst 
among all the approaches in this study except the random approach. Especially 
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for xµ , xσ , bµ  and bσ  estimation, its RRMSEs are more than twice of those 
from the complete-data likelihood approach. Nevertheless, the conditional like-
lihood approach performs substantially better than the random approach. 

Simulation results presented in Table 4 provide a comparison of the various 
estimation approaches for a nonlinear VonB model with BI variation. The out-
comes for this nonlinear case are similar to the linear case just described. The 
full information, full-data and EP likelihood approaches have only tiny differ-
ences in performance, and in general perform better than the other approaches. 
The WL and calibrated WL approaches have almost identical performance. The 
complete-data likelihood approach has close performance as the two WL ap-
proaches and it is not clear which method is better. In Case 1 the conditional li-
kelihood approach performs better than the random approach, but worse than 
all the other approaches including the complete-data approach. In Case 2 its 
performance is much worse than all the approaches including the random ap-
proach. Actually, the conditional likelihood approach failed for this case because 
it did not converge in 107 of the 500 simulations. All the methods in this study 
cannot estimate 0a  well, with large RBias, large RSEs, and hence large 
RRMSEs. In practice we suggest to borrow information from other studies such 
as larvae studies to fix 0a , or equivalently to fix length at age 0, for the VonB 
model. 

6. Real Data Analysis 

The simulation study indicates that the full information likelihood (1), full-data 
likelihood (15) and EP likelihood (20) approaches perform better than the other 
estimation methods. In this section we apply these three approaches to fit the 
VonB model (24) using a dataset collected by DFO in NAFO Division 3N during 
the spring of 2011. Here we consider only female American plaice because males 
and females follow different growth models. 

The LSAS within each Division involved measuring the length of all fish 
caught in research trawl tows, classifying them into 2 cm length strata, and sub-
sampling a few or no otoliths from each length stratum. The sampling goal in 
each Division was to obtain about 25 age measurements per 2 cm length stratum 
by sex if length 10 cm≥ , and about 15 age measurements per stratum without 
sex distinguishment if length 10 cm< . 

Parameter estimates (ESTs) and the corresponding standard errors (SEs) are 
provided in Table 5. The three estimation approaches give similar values for all 
the parameters and SEs, which agrees with their close performance in the simu-
lation study. For comparison, we also included estimates from the random ap-
proach (26), which result in a substantially larger value for l∞  and a smaller 
value for k. The standard errors of the estimates from the random approach are 
also larger, especially for l∞ . 

Applying (17), we obtained the standardized residuals of the second phase 
complete data for all approaches, whose box-and-whisker plots by age are shown 
in Figure 1. The standardized residuals from the full information likelihood, EP  
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Figure 1. Box-and-whisker plots of standardized residuals vs. age from fitting the VonB 
model with BI variation (24) to the American plaice data from DFO 2011 Spring survey 
in NAFO Division 3N by the four likelihood approaches: full information likelihood (Full 
information), empirical proportion likelihood (EP), full-data likelihood (Full-data) and 
random sample assumption based likelihood (Random). The black dots are the medians. 
The boxes indicate the lower and upper quartiles. The ends of the whiskers represent the 
lowest datum still within 1.5 IQR (interquartile range) of the lower quartile, and the 
highest datum still within 1.5 IQR of the upper quartile. 
 
Table 5. Parameter estimates (EST) and standard errors (SE) for the VonB model with 
between-individual variation (24). 

Method Value l∞  k 0a  CV 

Full information EST 61.86 0.10 −0.51 0.11 

likelihood SE 1.74 0.0056 0.14 0.0037 

EP EST 62.21 0.10 −0.49 0.11 

likelihood SE 1.77 0.0056 0.13 0.0037 

Full-data EST 65.05 0.093 −0.75 0.11 

likelihood SE 1.78 0.0048 0.13 0.0037 

Random EST 84.20 0.065 −0.82 0.11 

 SE 5.53 0.0072 0.17 0.0039 

 
likelihood and full-data likelihood approaches do not indicate bias in fitted 
mean length at age from the data mean along the full range of age. The standar-
dized residuals from the random approach (26) exhibit clear bias to negative 
values at ages larger than about 12, indicating over-estimation of l∞ . In Figure 
1 the interquartile range (IQR, the box) of the residuals is much larger at young-
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er ages (≤4) compared to older ages (≥9). The standard deviation (SD) of the 
standardized residuals at each age is supposed to be 1. However, the calculated 
SDs (results not shown) transfers from being greater than 1 at younger ages (≤4) 
to being mainly smaller than about 0.6 at older ages (≥9). These suggest two 
problems with the model: 1) the BI variation model in (24) under-estimates the 
variation at shorter lengths and vice-versa at longer lengths for this data, and 2) 
due to reproduction, the juvenile female American plaice follows a different 
growth model from the adult female American plaice, which is neglected by the 
current model. 

7. Discussion 

We derived the density function (11) for BSS (basic stratified sampling) com-
plete data, and constructed the complete-data likelihood (12), which allows sta-
tistical inference when the incomplete data are not well retained. The com-
plete-data density can also be used for standardized residual calculation as dis-
cussed in Section 3. Residuals are important for validation of fitted models. 

Both the complete-data likelihood approach and the random approach make 
use of only the complete data. The complete approach performs substantially 
better than the random approach in the simulation studies, indicating the im-
portance of correctly incorporating the sampling scheme in the inference me-
thods. The conditional likelihood (6) accounts for the sampling scheme ap-
proximately by ignoring the randomness in hn  in all the strata. Therefore its 
performance lies between the random and the complete-data likelihood ap-
proaches in almost all the cases in the simulation study. However in some BSS 
sampling projects where the number of strata is small and the maximum sub-
sample size hm  for each stratum can usually be obtained, then the conditional 
likelihood (6) is appropriate. 

Another method to incorporate the sampling scheme is to use the count in-
formation of the incomplete data in each stratum, as in the weighted likelihood 
(WL) and calibrated WL approaches. Even though in the simulation study the 
two methods of accounting for the sampling scheme, namely the complete-data 
likelihood and the (calibrated) WL approaches, have comparable performance, 
the complete-data likelihood requires an appropriate distribution model for co-
variates, which can limit its application. The WL and calibrated WL approaches 
are not subject to this restriction, and hence can be more practical. 

A full utilization of the information in incomplete data is to incorporate the 
density function of the incomplete data in the likelihood. In this regard, we pro-
posed two new likelihoods for BSS, namely, the full-data likelihood and the em-
pirical proportion (EP) likelihood. If the covariate distribution can be properly 
modeled, the two new approaches perform as well as the standard full informa-
tion likelihood approach, and they all perform substantially better than the other 
methods covered in this study. This result suggests the significance of the infor-
mation in the incomplete data. 
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On the whole this study indicates that the complete data, the incomplete data, 
and the sampling scheme are all important for a consistent and efficient statis-
tical inference from BSS data. 

In this work we found that the EP likelihood approach, which was originally 
proposed for the variable probability sampling (VPS), works well (or the best 
together with the full-data and full information likelihood approaches) for BSS 
data. Its merits will further show up when covariates cannot be modeled effec-
tively. This work is under the condition that a valid covariate distribution model 
is available, which may be a strong assumption in practice. We will explore the 
case when no appropriate covariate distribution model is available in another 
paper. 
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Appendix: Proof of Theorem 1 

Without loss of generality, we assume that ( ), hS∈y x , then 

( ) ( )( ) ( )( ), | 1; Pr , | 1; Pr , | , , 1; .h hf R S R S R= = ∈ = ∈ =y x y x y x y xθ θ θ  

Since the selection for full observation is random given ( ), hS∈y x , 

( )( ) ( )( ) ( ), |
Pr , | , , 1; Pr , | , ; ,h h

h

f
S R S

Q
∈ = = ∈ =

y x
y x y x y x y x

θ
θ θ  

and we have 

( ) ( )( ) ( )

( ) ( )( ) ( )
0

, |
, | 1; Pr , | 1;

, |
Pr | 1; Pr , | , 1; ,

h

h

h
h

m

h h h
n h

f
f R S R

Q
f

n R S n R
Q=

= = ∈ =

= = ∈ =∑

y x
y x y x

y x
y x

θ
θ θ

θ
θ θ

     (27) 

where hn  is the sample size in the hth stratum as defined by (4). 
( )( )Pr , | , 1;h h hS n R n∈ = ∝y x θ , that is, the probability for a selected unit to 

be in a stratum h is proportional to the number of vacancies in the stratum h. 
Also, ( ) ( )Pr | 1; Pr |h hn R n= =θ θ , namely, the event {a unit is selected without 
any further information about its ( ),y x } is independent of the event {there are 

hn  units that are selected in the stratum h}.  

( ) ( )
( )

dbin , , , if and hence ,
Pr |

1 pbin 1, , , if and hence .
h h h h h h

h
h h h h h h

N N Q N m n N
n

m N Q N m n m
 < ==  − − ≥ =

θ  

Hence, when ( ), hS∈y x ,  

( ) ( )

( ) ( )
1

1

, |
, | 1;

dbin , , 1 pbin 1, , ,
h

h

h

m

h h h h h h
N

f
f R
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N N N Q m m N Q
−

=
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   
∑

y x
y x
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θ

 

which can be normalized into (11). 
Note that in the case ( )Pr | 1h hn m= =θ  for all the strata 1, ,h H=  , 
( )( ) 1Pr , | , 1; H

h h h hhS m R m m
=

∈ = = ∑y x θ , which is a constant independent of 
θ . Then (27) leads to ( ) ( ), | 1; , | hf R f Q= ∝y x y xθ θ , which proved (5).  
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