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Abstract 
Background: The signal-to-noise ratio (SNR) is recognized as an index of 
measurements reproducibility. We derive the maximum likelihood estimators 
of SNR and discuss confidence interval construction on the difference be-
tween two correlated SNRs when the readings are from bivariate normal and 
bivariate lognormal distribution. We use the Pearson’s system of curves to 
approximate the difference between the two estimates and use the bootstrap 
methods to validate the approximate distributions of the statistic of interest. 
Methods: The paper uses the delta method to find the first four central mo-
ments, and hence the skewness and kurtosis which are important in the de-
termination of the parameters of the Pearson’s distribution. Results: The ap-
proach is illustrated in two examples; one from veterinary microbiology and 
food safety data and the other on data from clinical medicine. We derived the 
four central moments of the target statistics, together with the bootstrap me-
thod to evaluate the parameters of Pearson’s distribution. The fitted Pearson’s 
curves of Types I and II were recommended based on the available data. The 
R-codes are also provided to be readily used by the readers. 
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1. Introduction 

Signal-to-noise is an important measure of quality measurements and it has ap-
plications in many fields including medicine, engineering and genomics. Gener-
ally speaking, a signal is what the investigator tries to measure, and the noise is 
the amount of uncertainty that surrounds the value of the signal making it hard 
to identify the actual value of the signal. For example, in a trial that uses weight 
reduction drugs, the Body Mass Index (BMI) may be a signal of interest while 
the noise may be attributed to failure to account for participants’ baseline mea-
surements. 

Radiologists use the signal-to-noise ratio (SNR), defined as the ratio of the 
mean signal to its standard deviation, as a measure of image quality (Cunning-
ham and Shaw [1]). For example, in the case of Magnetic Resonance Images 
(MRI), the noise may be distributed uniformly throughout the image, and one 
way of measuring the effect of noise is to calculate the SNR. For MRI data, radi-
ologists evaluate the SNR by computing the mean signal intensity over a certain 
region of interest (ROI) and dividing this by the standard deviation of the signal 
from outside the image. In cancer diagnosis, Jung et al. [2] applied SNR to inves-
tigate the accuracy and inter-observer variability of a standardized evaluation 
system for endorectal three-dimensional MR spectroscopic imaging of the pros-
tate. They noted that most of current image processing applied to MRI image 
data can be formulated as a parameter estimation problem, and in the case of 
noise filtering, the SNR is the target parameter. Sim and Kamel [3] proposed an 
autoregressive (AR) model for SNR estimation. In more general settings, Tagu-
chi, and Wu [4] used the SNR as an indicator of “closeness to target” and [5] 
provided references for indices of measurement quality and reliability. 

Applications of SNR in Genomics 

One of the interesting applications of SNR is in genomics. The unique condi-
tions in gene expression analysis [6] are: 1) the level of a transcriptor depends 
roughly on the concentration of the related factors that control the rate of pro-
duction of the transcript; 2) the random variations for any particular transcript 
are normally distributed. In several applications, it is assumed that the variation 
of any transcript is constant relative to most of the other transcripts in the ge-
nome which means the coefficient of variation σ/μ is considered constant across 
the genome. Alternatively, we may take μ/σ (signal-to-raise ratio) which we use 
in this paper as a measure of relative variation. 

For example, suppose that we have a micro assay with the R genes with red 
and green expression values, 1, , kR R , and 1 2 , ,, kG G G . Let Rµ  and Rσ  
denote the mean and standard deviation of jR . It is of interest to test the null 
hypothesis. 

0 : R R G GH µ σ µ σ=  

Our paper has three-fold objectives: The first is developing nonparametric 
methods for testing the equality of two correlated SNR parameters. The second 
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is to use Pearson’s system of curves to construct a probability distribution for the 
difference between two estimates of SNR in the case of bivariate normal and the 
bivariate lognormal distributions. This is quite important because providing the 
best approximate distribution allows us to study the characteristics of the distri-
bution of the statistic of interest beyond the point and interval estimation of the 
corresponding population parameter. The last objective is to illustrate the me-
thodologies on real life data. 

2. Testing the Equality of Two Correlated SNRs 

Let ( )1 2, , , nX X X  be a random sample drawn from ( )2,N µ σ . We define 
the signal-to-noise ration as: 

θ µ σ=  

The maximum likelihood estimator (MLE) of θ is 
*ˆ / ,X Sθ =  

where, 

1

1 ,
n

i
i

X x
n =

= ∑  

and  

( )
* 22

1

1 n

i
i

S X X
n =

= −∑  

and respectively the maximum likelihood estimators of μ, and σ2. Instead of S2, 
we shall use 

( )22

1

1
1

n

i
i

S X X
n =

= −
− ∑  

which is unbiased estimator of σ2 instead of 
*
2S . 

Since one of the characteristics of the normal distribution is the stochastic in-
dependence of X  from S2, we have: 

( ) ( ) [ ]ˆ 1E E X E Sθ = ⋅ , with ( )E X µ=  

Now, since ( ) ( )
2 2 2

11 nn S Xσ −− = , where ( )
2

1nX −  denotes a chi-square random 
variable with ( )1n −  degrees of freedom, we can evaluate the exact moments of 
θ̂ . The rth non-central moment of 

*ˆ /X Sθ =  are: 

( ) ( )ˆ r r
r E X E Sµ θ ⋅  ′ =                        (1) 

( )1

1
1 2ˆ

12
2

n
n

n
µµ θ
σ

 Γ − −  ′ =
− Γ 

 

                    (2) 

( ) ( )
2

2
2 2

1ˆ
3

n
n n
σµ θ µ

σ
   −′ = +    −    

                  (3) 
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Hence, from (1) and (2) we have  

( ) ( ) ( )

2
2

2 2
2

1
1 1 1 2ˆ ˆvar

13 3 2
2

n
n n n

nn n n
µθ µ θ
σ

  Γ −  − − −   = = + −
−− −   Γ     

       (4) 

This estimator is biased and has an expected value: 

( )
1

1 2ˆ 1
12

2

n
nE

n
θ θ θ

  Γ −  −   − = −
−  Γ    

                (5) 

From (5) the relative bias of θ̂  is given by: 

1ˆ 1 2RB 1
12

2

n
nE

n
θ θ
θ

 Γ −  − −  = = −  −   Γ 
 

               (6) 

For selected values of the sample size n, the corresponding values RB given in 
(6) are provided in Table 1. 

From Table 1, we can see that the RB of the MLE of θ̂  is almost negligible 
when the sample size n gets larger. Now, if two independent samples are availa-
ble, the difference between estimated two independent SNRs defined as D: 

1 2
ˆ ˆ .D θ θ= −  

We can show that under the assumption of independence that: 

( ) ( ) ( )
( ) ( ) ( )2 2

1 2 1 2
2 1ˆv ˆvar

3
ar

n
D H n

n n
θ θ θ θ

−
− += = +

−
          (7) 

where 

( )
2

2

1
1 1 2

13 2
2

n
n nH n

nn

 Γ − − −   = −   −−    Γ  
 

 

We may therefore construct a ( )1 100%α−  CI on ( )1 2
ˆ ˆθ θ−  as: 

( ) ( )1 2 1 2 1 2
ˆ ˆ ˆ ˆvarz αθ θ θ θ−− ± −                    (8) 

When neither the assumptions of independence nor the normality are satis-
fied, we propose several approaches to test the hypothesis on the equality of two 
correlated SNRs. The first approach is nonparametric and is suitable when the 
distributional assumptions of the parents populations cannot be verified. 

 
Table 1. This relative bias is negligible even for small sample size.  

n 10 15 20 30 40 50 

RB 0.094 0.058 0.042 0.027 0.02 0.016 
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3. Nonparametric Test of the Null Hypothesis H0:  
SNR1 = SNR2 

Let ( )1 2,j jx x  denote a random sample ( 1,2, ,j n=  ) available from any biva-
riate distribution such that, 1,2, ,i n=   denote a random sample of size n, 
with parameter vector given by ( )2 2

1 2 1 2 12, , , ,µ µ σ σ ρ . The samples summary sta-
tistics of the data are:  

( )1 1meanX X= , ( )2 2meanX X= , ( )2
1 1varianceS X= , ( )2

2 2varianceS X= , 
and 12ρ  is the correlation between X1 and X2. 

We define the signal-to-noise ratio (SNR) of the ith sample by: 

i i iθ µ σ= , (i = 1, 2) whose moment estimators are: î i ix sθ =  
It is evident that only if 1 2µ µ=  and 2 2

1 2σ σ= , then 1 2θ θ= . Therefore, if the 
available data support the null hypothesis: 

2 2
0 1 2 1 2:H µ µ σ σ= =                      (9) 

then we conclude that 1 2θ θ= . 
Testing the hypothesis (9) is equivalent to using the test developed in [7]. Ear-

lier, [7] suggested tests of equality of correlated means and correlated variances 
using the statistic (10): 

( )
( ) ( )

2 2 2
1 2 12

2 2
12 12

1
WILK

1 1

S S

S S C

ρ

ρ ρ

−
=

 + − + 
             (10) 

where 2 2 2
1 2

1
2

S S S = +  , ( )1 2 2C X X= − , and 12ρ  is the correlation be-

tween the two sets of observations. 
Then ( ) ( )

2
22log WILK ~Q X−= . 

Example 1: 
The Petrifilm test, a quantitative microbiological test for Escherichia coli 

O157:H7, was evaluated for its performance as a beef-carcass monitoring test 
compared with an E. coli O157:H7 detection method using a hydrophobic grid 
membrane filter (HGMF) [8]. The Petrifilm test showed excellent agreement 
with the HGMF method when test samples were obtained from pure cultures 
and experimentally contaminated meat. Here we shall compare the SNR of the 
two methods using the nonparametric indirect approach suggested in (10), using 
a sample of 23 pairs of observations. 

We provide the R code in which we use the bootstrap methodology to estab-
lish the large sample properties of the proposed statistic in Appendix 2.  

RESULTS 
SNR_Pertifilm = 0.979 
SNR_hgmf = 1.05 
Correlation = 0.996 
quantile (−2 * log(WILK), probs = c (0.05, 0.95)) 
 5%  95%  
 0.006 0.863  
quantile (xx, probs = c (0.05, 0.95)) 
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 5%  95%  
 0.101 5.983 
As can be seen the (5%, 95%) bootstrap quantiles of the test on the equality of 

the two SNRs (0.006, 0.863) are completely contained within the theoretical 
quantiles of a chi-square distribution xx, with 2 degrees of freedom. Thus, we 
established the equality of the two SNRs. The approximate distribution of the 
statistic (10) is depicted graphically in Figure 1, Figure 2. 

Figure 1 shows that the histogram is skewed to the right, while Figure 2 
shows that the distribution of −2 * logWILK is in close agreement with xx (chi 
square random variable with n − 2 degrees of freedom). 

 

 

Figure 1. Histogram of 1000 bootstrap samples of the sta-
tistic (10). 

 

 

Figure 2. The q-q plot of the statistic (10) plotted against 
1000 samples xx, from the chi-square distribution with 2 
degrees of freedom. 
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4. The Pearson’s System of Curves 

Several years ago, Karl Pearson introduced a system of distributions that have 
been found useful in many applications. Pearson’s family of distributions gene-
rates different densities (f) that are solutions of the differential equation: 

( )
2

0 1 2

d
d

x a ff
x b b x b x

−
=

+ +
                    (11) 

The system of curves was discussed in detail in [9], and in this section we 
present a summary of their results. 

The moments of a PSC (Pearson’s System of Curves) are determined by the 
values of the constants in (1) in addition to the constant if integration; con-
versely if we have the four moments of a PC we can solve for the constants in 
Equation (11). Pearson classified the solutions into types numbered 1 to 6. In 
constructing confidence intervals on the population parameter, the quartiles of x 
are more important than the form of the probability density “f”. 

To clarify this point, we assume that x has a Pearson curve density, with mean 
μ and central moments 2 3,µ µ  and 4µ . The percentage points of the standar-
dized x given as ( ) 2x x µ µ= −  can be obtained as functions of skewness 

2 3
1 3 2β µ µ= =  and kurtosis 2

2 4 2β µ µ= = , and are tabulated in double entry 
tables against skewness  and kurtosis. The percentage points of x are then 
easily obtained from those of x. 

In summary, the steps of fitting a Pearson curve to theoretical distribution as 
summarized in [9] are: 

1) We calculate skewness 2 3
3 2s µ µ= =  and kurtosis 2

4 2k µ µ= =  
2) Based on s and k we obtain Xα , the percentage point at upper or lower 

level α 
3) Calculate 2x xα α µ µ′ = +  if 3µ  is positive or  

1 2x Xα αµ µ−′ = −  

if 3µ  is negative 
There are six types of Pearson’s distributions: 
Type I = These distributions are (location scale transformation of) Beta dis-

tributions. The probability density function with parameters, a, b, scale = s and 
location = m is given by: 

( ) ( )
( ) ( )

1 1

1
a ba b x m x mf x

a b ss ss ss

− −Γ + − −   = −   Γ Γ    
           (12) 

For 0a > , 0b > , 0ss ≠ , 0 1x m
s
−

< <  

Type II = Pearson Type II is the symmetric Beta is a special case of Type I and 
is obtained when a b= . Therefore, the probability density function is given by: 

( ) ( )
( )

1

2

2
1

aa x m x mf x
ss ssa ss

−Γ  − −   = −   Γ    
             (13) 
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Type III = This is the Gamma distribution. The probability density function 
with shape = a, scale = ss, and location = m is given by: 

( )
( )

( ) 11 expa
a

x mf x x m
ssa ss

− − = − −  Γ
             (14) 

For 0ss ≠ , 0a >  and 0x m
ss
−

≥ . 

Type IV = The Pearson Type IV with location parameter = m, scale parame-
ter = ss and shape parameters 1 2,δ δ  has pdf given by: 

( )
12

1
11 exp tank x m x mf x X

ss ss ss

δ

δ
−

−
 −  −    = + −           

        (15) 

where 

( )

2
2

1

1
1

1 12 ,
2 2

i
k B

δδ
δ

δ

  Γ +      = − Γ   
  

 

where 0ss > , 1
1
2

δ >  ( 2 0δ =  corresponds to the Pearson Type VII distribu-

tion family). 
Type V = This is the Inverse Gamma distributions. The pdf is given by: 

( ) ( ) ( ) 1 exp
ss xf x x m

x m

α
α

α
− −  = − − Γ − 

             (16) 

where ss = scale parameter, α = shape parameter, and m = location parameter. 
The scale parameter is permitted to have negative values to allow for left skew-
ness.  

Type VI = Known as the Beta Prime distribution and in fact are scaled 
F-distributions. The pdf is given by: 

( ) ( )
( ) ( )

1

1
a a ba b x m x mf x

ss b ss ssα

− − −Γ + − −   = +   Γ Γ    
         (17) 

ss = scale parameter 
m = location parameter 

0, 0, 0, 0x ma b s
ss
−

> > ≠ >  

Clearly, to determine the approximate Pearson curve for any random variable, 
we should have the numerical values of the skewness and kurtosis, that is we 
have to determine its first four central moments. To find the first 4 central mo-
ments of ∆ , we shall use the delta method by employing the Taylor’s expansion 
on ∆ . For ready calculations of the moments, we shall use some of the results 
from [10] together with the expectations of products of correlated chi-square va-
riables and the higher order moments of bivariate normal distribution. These 
expectations are given in Appendix 1. 
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5. The Case of the Bivariate Normal Distribution 

Let ( )2~ , , 1,2; 1,2, ,ij i ix BVN i j nµ σ = =   be a random sample from bivariate 
normal distribution.  

Our main objective are: 
1) Construct a large sample confidence interval on ( ) ( )1 2 1 1 2 2θ θ µ σ µ σ− = −  
2) Use the first four central moments of ( ) ( )1 2 1 1 2 2

ˆ ˆ x s x sθ θ= − = −∆  to fit a 
Pearson family and find the appropriate quantiles. 

We shall use the delta method by employing the Taylor’s expansion on the 
statistic ∆ . 

Now we derive the first 4 central moments of the targeted statistic 1 2
ˆ ˆθ θ=∆ − . 

On using the Taylor’s expansion, we define the variance of 1 2
ˆ ˆθ θ=∆ −  as: 

( ) ( ) ( ) ( ) ( ) 22 2 2 2
2 1 1 1 2 2 2 1 1 1 2 2 2E x x s sµ µ α µ α σ γ σ γ∆ = − + − + − + − 

 
  

where 

, 1,2j
jx

jα ∆∂
= =
∂



 

2 , 1,2j
j

j
s

γ
∂
∆∂

= =


 

1 1 2 21 , 1α σ α σ= = −  

1 2
1 23 3

1 2

,
2 2
µ µ

γ γ
σ σ

= − =  

Substituting these values in ( )2µ ∆ , using the appropriate expectations in the 
Appendix 1, and after simplifications, to the first order of approximation we get: 

( ) ( )
( )

2 2 2
2 1 2 1 2

2 1 1 2
1 2 1n n
ρ

µ θ θ θ θ ρ
−

 + + − − −
∆ 

            (18) 

The third central moment is defined as: 

( ) ( ) ( ) ( ) ( ) 32 2 2 2
3 1 1 1 2 2 2 1 1 1 2 2 2E x x s sµ µ α µ α σ γ σ γ∆ = − + − + − + − 

 
  

Again, using the expectations in Appendix 1, and after simplifications we get: 

( )
( ) ( ) ( )

3 3 2
1 2 1 2

3 1 22

3
2 11
n

nn
θ θ ρ θ θ

µ θ θ
+

= − +
−−

∆                  (19) 

The fourth central moment is defined as: 

( ) ( ) ( ) ( ) ( ) 42 2 2 2
4 1 1 1 2 2 2 1 1 1 2 2 2E sx sxµ µ α µ α σ γ σ γ∆ = − + − + − + − 

 
  

Again, using the expectations in Appendix 1 and after simplifications we get: 

( ) ( )
( )

( )
( )

( )

( )
( )

( )

( )
( )
( ) ( )

2 2
2 2

4 1 2 1 2 13

4 4
1 23

2 2 4 2
1 2 2 3 3

12 1 3 36
1 1

3 1

4 1

8 13 1 4
8 1 1 1

n
n n n n

n

n

nn
n n n

ρ ρµ θ θ ρ θ θ θ

θ θ

θ θ ρ ρ

− +
= + − +

− −

+
+ +

−

++
+ + +


 
 − − −

∆





      (20) 
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Example 2: Vitamin B12 and Folic Acid as predictors of Osteoporosis 
Osteoporosis and bone health remain a major health problem often associated 

with significant morbidity, mortality, and healthcare costs [11]. An epidemio-
logical analysis reported that 34% of healthy Saudi women and 30.7% of healthy 
Saudi men aged between 50 and 79 years are osteoporotic [12]. Furthermore, 
approximately 40% - 50% of women and 25% - 33% of men sustain osteoporotic 
fractures in their lifetimes. Hence, identifying the risk factors for osteoporosis is 
crucial in reducing the incidence of fractures. One study investigated the rela-
tionship between vitamin B12 and folate levels and BMD in Saudi Arabia [13] 
[14]. A recent study established the association between B12 and folate levels 
and BMD [15]. We used part of the data to investigate which factor has a higher 
SNR so it can be used reliably in the prediction of osteoporotic fractures. 

Results of data analysis are shown in Table 2. 
On using the normal Q-Q plot, we noted that the log transformed B12, and 

Folate are approximately normally distributed with correlation = 0.290 (p-value 
< 0.001). 

Figure 3 and Figure 4 show respectively that the log-transformed variables 
B12 and Folate are approximately normally distributed. Preliminary data analy-
sis gave: 

 
Table 2. Summary statistics of the B12 and Folate data. 

 N Mean Std. Deviation 

B12 level 218 326.14 174.485 

Folate level 218 2133.47 667.676 

logB12 (X1) 218 5.6546 .51782 

logFolate (X2) 218 7.6180 .30944 
 

 

Figure 3. Q-Q normal plot of the log-transformed B12. 
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Figure 4. Q-Q normal plot of the log-transformed Folate. 
 

SNR (X1) = 5.6546/.51782 = 10.92 
SNR (X2) = 7.618/.30944 = 24.62 
Difference = SNR (X2) – SNR (X1) = 13.7 
SE (Difference) = 0.41 

Lower 95% confidence limit = Difference − 1.96 * SE (Difference) = 12.9 (21) 

Upper 95% confidence limit = Difference + 1.96 * SE (Difference) = 14.5 (22) 

Apparently, logFolate has a significantly higher SNR than the logB12. 
Again, we use the bootstrap of the data to find the best fitting Pearson curve 

for the distribution of: 1 2
ˆ ˆθ θ=∆ − . The R code is given in Appendix 3. 

Results 
Variance = 1.106637, mean = 13.78 
quantile (PIVOT, probs = c (0.05, 0.95)) 
 5%  95%  
 12.155  15.613 
Since the 95% empirical confidence limits (12.155, 15.613) do not include zero, 

we conclude that the two SNRs are significantly different. Note that the empiri-
cal limits are almost identical to the 95% confidence limits (21) and (22) (Figure 
5 and Figure 6). 

PEARSON’s CURVE: 
Parameters estimates of the Pearson curve 
type  a  b   location  scale  
II   15.75  30.53 8.58   15.26  
Pearson moments 
mean  variance  skewness  kurtosis  
13.779  1.107  0.192   2.932 
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Figure 5. The histogram of 1000 bootstrap values of the 
statistic PIVOT = 1 2

ˆ ˆθ θ=∆ − . 
 

 

Figure 6. Region of definition (yellow) of the Pearson’s 
curve showing that the Type II is the best curve to fit the 
distribution of the difference between the estimated SNRs. 

6. The Bivariate Lognormal Case 

Let 1V  and 2V  be two log normally distributed random variables defined on 
the intervals 10 V< < ∞ , 20 V< < ∞ , and 1 2,X X  denote the transformed 
normal variables; that is 

1 1 2 2log , logX V X V= =  

where the joint distribution of ( )1 2,X X  is a bivariate normal. The joint pdf of 
( )1 2,V V  is given by: 

( ) ( )1 2 22
1 21 2

1 1, exp
2 12 1

qf V V
VV ρσ σ ρ

 − =
 −π −  

          (23) 
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where 2 22q A AB Bρ= − +  

( ) ( )1 1 1 2 2 2log , logA V B Vµ σ µ σ= − = −  

iµ  are the means of iX , iσ  are their standard deviations and ρ  is the 
correlation between ( )1 2,X X . 

The Joint probability density function given in (23) is that of a bivariate log-
normal distribution which was studied extensively in [16]. The means and the 
variance of the lognormal distributions are given respectively as follows 

( ) ( )2Mean exp 2i i iV µ σ= +  

( ) ( ) ( )2 2Var exp 2 e2 xpi i i i iV µ σ µ σ= + +−  

The SNR is thus given by ( ) ( )( ) ( )2 1 2
Mean Var esqrt 1i

i iV V σ
−

= − . 

We are interested in deriving the distribution of the maximum likelihood es-
timator of 

( ) ( )2 2
1 2

1 2 1 2
e 1 e 1σ σ

− −

= − − −∆                  (24) 

This estimator is given by: 

( ) ( ) ( )2 2
1 2

1 2 1 2
2 2

1 2, e 1 e 1S Sg S S
− −

= = − − −∆             (25) 

Note that the case of two independent lognormal populations was investigated 
in [17]. 

To find the first 4 central moments and similar to the case of bivariate normal 
distribution discussed in the previous section, we employ the Taylor’s series ex-
pansion on ( )2 2

1 2,g S S , as shown in (26). 
In general for the pair of estimators ( )1 2

ˆ ˆ,θ θ  assumed unbiased for ( )1 2,θ θ  
we have: 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 2 2
ˆ ˆ ˆ ˆ, ,g gθ θ θ θ θ θ δ θ θ δ+ − + −          (26) 

where ˆj
j

gδ
θ
∂

=
∂



, g  means the partial derivative is evaluated at the true value 

of the parameter. This partial derivative is given in (27). 
2

2 3 2
e

2 e 1

j

j
j

σ

σ
δ −

=
 −  

                       (27) 

Let ( )rµ ∆  denote the rth central moment of ∆ , that is: 

( ) ( ) ( )
22 2

1 2 1 2, ,r E g S S gµ θ θ = −∆ 
  

2,3,4r =  

Therefore, using (27) we get: 

( ) ( ) ( )
4 2 2 4

2 2 21 1 2 2
2 1 1 2 22 1 1 2 1n n n

σ σ σ σ
µ δ ρ δ δ δ= + +

− − −
∆          (28) 
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( )
( ) ( )

( )

6 6
3 31 2

3 1 22 2

2 2 2 2 2 2 2
1 2 1 1 2 2 1 2

1 1
3

2 1

n n
n

n

σ σ
µ δ δ

ρ σ σ σ δ δ σ δ δ

= − +
−

∆
−

 − + −



           (29) 

( ) ( )
( )

( )
( )

( )
( )

( )
( )
( ) ( )

8 4 8 4 6 2 2 3
4 1 1 2 2 1 2 1 23 3

2 6 2 3
1 2 1 23

2
4 4 2 2 4
1 2 1 2 2 3 3

12 3 48 3

1 1

48 3

1

4 11 46
1 1 1

n n

n n

n

n

nn
n n n

µ σ δ σ δ σ σ ρ δ δ

σ σ ρ δ δ

ρσ σ δ δ ρ

+ +
 = − + + − −

+
+

−

 ++
+ + + 

− − −  

∆

      (30) 

 

 

Figure 7. The histogram of the 1000 bootstrap samples 
for the distribution of ∆ . 

 

 

Figure 8. Pearson’s diagram shows that in the case of the cor-
related lognormal distribution the Type I curve is the best dis-
tribution of ∆  for the bivariate log-normally distributed.  
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The moments of ∆  given in (28), (29), and (30) are used to derive the skewness 
and kurtosis that are needed to calculate the parameters of the Pearson’s curve. 

Example 3: 
We have shown that the B12 and Folate data in the previous example, after 

applying the log transformation, the transformed variables were quite close to 
the normal distribution. Therefore, we may conclude that the untransformed va-
riables may have lognormal distributions. Similar Bootstrap approach may then 
be used to find the empirical Pearson’s distribution, when the difference between 
the estimated SNRs is ∆ . The R code in this case is the same as in the case of 
bivariate normal distribution. The results are summarized below. 

Variance ( ∆ ) = 0.023, Mean ( ∆ ) = 1.363, Skewness = 0.070, and Kurtosis = 
2.916. 

The empirical 5%, 95% quantiles are (1.118, 1.612). Since the quantiles do not 
include zero, we conclude that with 95% confidence, that there is a significant 
difference between the two SNRs under the bivariate log-normal set up. The pa-
rameters of the Pearson’s curve are: 

type  a  b  location  scale  
1   27.14 36.028 0.32   2.428 
Note that, the notation PIVOT_L is used to denote the random variable ∆ . 
As can be seen from the histogram in Figure 7, the distribution of ∆  is 

slightly skewed to the right. 
From the diagram in Figure 8, it seems that the Pearson’s Type 1 is the best 

approximating distribution. 

7. Discussion and Conclusions 

In this paper, we considered two approaches to estimate and test the difference 
between two SNR ratios. Through bootstrap sampling, the nonparametric ap-
proach confirmed the large sample distribution of the test statistic on the hypo-
thesis of simultaneously testing the equality of means and variances, and hence 
equality of two correlated SNRs.  

When the bivariate distribution is either normal or lognormal we derived the 
first four central moments of the target statistics using delta the method. The-
reafter, we used the bootstrap to find the Pearson’s family that best fits the dis-
tribution of the estimated difference between SNRs. Pearson’s Type I&II gave 
the best fit based on the available data. Several R [18] packages were used in the 
computational steps to achieve the objectives of the paper.  
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Appendix 1. Cross Product Expectations of Higher Order  
Functions of Bivariate Normal and Bivariate Chi-Square  
Random Variables 

( )4 43i i iE x nµ σ − =  , 1,2i =  

( ) ( )
22 2 42 1i i iE s nσ σ − = −  

 

( ) ( )
3 22 2 48 1i i iE s nσ σ − = −  

 

( ) ( )
( )

42 2 8
23

12 3

1
i i

n
E s

n
σ σ

+ − =   −
 

( )( ) ( )2 2 2 2 2 2 2
1 1 2 2 1 22 1E s s nσ σ ρ σ σ − − = −   

( ) ( ) ( )
2 22 2 2 2 4 4

1 1 2 2 1 2 ,E s s M nσ σ σ σ ρ − − =  
 

where 

( )
( )

( )
( ) ( )

4 2
2 3 3

8 11 4,
1 1 1

nnM n
n n n

ρ ρ ρ
++

= + +
− − −

 

( ) ( )2
1 1 2 2 0E x xµ µ − − =   

( )( )2
1 1 2 2 0E x xµ µ − − =   

( ) ( )22 2 2 2 2 4 2
1 1 2 2 1 2

4
1

nE s s
n

σ σ ρ σ σ − − =   −
 

( )( )22 2 2 2 2 2 4
1 1 2 2 1 2

4
1

nE s s
n

σ σ ρ σ σ − − =   −
 

( ) ( )
2 2

2 2 21 2
1 1 2 2 1 2E x x

n
σ σ

µ µ ρ   − − = +    

( )( ) 1 2
1 1 2 2E x x

n
ρσ σ

µ µ− − =    

( )3 3
1 2 2 1 23E x x nµ µ ρσ σ − − =   

By symmetry 

( )( )3 3
1 1 2 2 1 23x nE x µ µ ρσ σ − − =   

( ) ( )
2 2

2 2 21 2
1 1 2 2 1 2E x x

n
σ σ

µ µ ρ   − − = +    

( ) ( ) ( )
( )

32 2 2 2 6 2 2
1 1 2 2 1 23

12 3

1

n
E s s

n
σ σ σ σ ρ

+ − − =   −
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Appendix 2. R-CODE for Example 3.1 

library(boot) 
B=1000 
n=nrow(data) 
n 
WILK=numeric(B) 
b<-data$petrifilm 
f<-data$hgmf 
mb<-mean(b) 
sb<-sd(b) 
mf<-mean(f) 
sf<-sd(f) 
for (bb in 1:B){ 
i<-sample(1:n,size=n,replace=TRUE) 
b<-data$petrifilm[i] 
f<-data$hgmf[i] 
mb=mean(b) 
mf=mean(f) 
sb=sd(b) 
sf=sd(f) 
rr=cor(b,f) 
up=sb^2*sf^2*(1-rr^2) 
down1=((sb^2+sf^2)/2)*(1+rr) 
down2=(((sb^2+sf^2)/2)*(1-rr))+((mb-mf)^2/2) 
WILK[bb]=up/(down1*down2) 
} 
print(vv<-var(-2*log(WILK))) 
print(mm<-mean(-2*log(WILK))) 
hist(-2*log(WILK),prob=TRUE) 
xx<-rchisq(1000,2) 
qqplot(xx,-2*log(WILK)) 
quantile(-2*log(WILK), probs = c(.05,.95)) 
quantile(xx,probs=c(.05,.95)) 
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Appendix 3. R Code for Fitting Pearson’s Curve for the B12  
and Folate Data of Example 3 

R-Code 
Bootstrapping the distribution of the PIVOT 1 2

ˆ ˆθ θ=∆ −  
library(ggplot2) 
library(boot) 
B=1000 
n=nrow(data) 
n 
PIVOT=numeric(B) 
b<-data$logB12 
f<-data$logFolate 
mb<-mean(b) 
sb<-sd(b) 
s1<-var(b) 
mf<-mean(f) 
sf<-sd(f) 
s2<-var(f) 
for (bb in 1:B){ 
i<-sample(1:n,size=n,replace=TRUE) 
b<-data$logB12[i] 
f<-data$logFolate[i] 
mb=mean(b) 
mf=mean(f) 
sb=sd(b) 
sf=sd(f) 
r=cor(b,f) 
r 
t1=mb/sb 
t2=mf/sf 
MU2<-(2*(1-r)/(n-1))+((t1^2+t2^2-2*t1*t2*r^2)/(2*(n-1))) 
MU2 
MU31<- (t1^3+t2^3)/(n-1)^2 
MU32<- (3*n*r^2*t1*t2*(t1+t2))/(2*(n-1)) 
MU3<- MU31-MU32 
A1<- (12*(1-r)^2/n) 
A2<- (6*r^2*t1*t2/(n*(n-1))) 
A3<- ((3*(n+3)*r^2*t1*t2*(t1^2+t2^2))/(n-1)^3) 
A4<- ((3*(n+1)*(t1^4+t2^4))/(4*(n-1)^3)) 
A51<-(3*t1^2*t2^2/8) 
A52<-(n+1)/(n-1)^2 
A53<- ((8*(n+1)*r^4)/(n-1)^3)+(4*r^4/(n-1)^3) 
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MU4<- A1+A2-A3+A4+A51*(A52+A53) 
PIVOT[bb]=(t2-t1) 
} 
print(vv<-var(PIVOT)) 
print(mm<-mean(PIVOT)) 
hist(PIVOT,prob=TRUE) 
xx<-rnorm(1000) 
qqplot(xx,PIVOT) 
quantile(PIVOT, probs = c(.05,.95)) 
den <- density(PIVOT) 
plot(den, frame = FALSE, col = "blue",main = "Density plot") 
#######MOMENTS AND PEARSON CURVE 
library(moments) 
all.moments(PIVOT,central=TRUE,order.max=4) 
s=skewness(PIVOT) 
k=kurtosis(PIVOT) 
m=mean(PIVOT) 
v=var(PIVOT) 
library(PearsonDS) 
###### PEARSON CODE####### 
library(PearsonDS) 
moments<-c(mean=m,variance=v,skewness=s,kurtosis=k) 
ppar<-pearsonFitM(moments=moments) 
print(unlist(ppar)) 
pearsonMoments(params=ppar) 
pearsonDia-
gram(max.skewness=sqrt(.25),max.kurtosis=4,squared.skewness=TRUE,lwd=2,l
egend=TRUE,n=999) 
pearsonMoments(moments=moments) 

 

https://doi.org/10.4236/ojs.2024.143010

	Using Pearson’s System of Curves to Approximate the Distributions of the Difference between Two Correlated Estimates of Signal-to-Noise Ratios: The Cases of Bivariate Normal and Bivariate Lognormal Distributions
	Abstract
	Keywords
	1. Introduction
	Applications of SNR in Genomics

	2. Testing the Equality of Two Correlated SNRs
	3. Nonparametric Test of the Null Hypothesis H0: SNR1 = SNR2
	4. The Pearson’s System of Curves
	5. The Case of the Bivariate Normal Distribution
	6. The Bivariate Lognormal Case
	7. Discussion and Conclusions
	Acknowledgements
	Conflicts of Interest
	References
	Appendix 1. Cross Product Expectations of Higher Order Functions of Bivariate Normal and Bivariate Chi-Square Random Variables
	Appendix 2. R-CODE for Example 3.1
	Appendix 3. R Code for Fitting Pearson’s Curve for the B12 and Folate Data of Example 3

