
Open Journal of Medical Imaging, 2020, 10, 17-29 
https://www.scirp.org/journal/ojmi 

ISSN Online: 2164-2796 
ISSN Print: 2164-2788 

 

DOI: 10.4236/ojmi.2020.101002  Jan. 17, 2020 17 Open Journal of Medical Imaging 
 

 
 
 

Using a Wavelet-Based and Fine-Tuned 
Convolutional Neural Network for 
Classification of Breast Density in 
Mammographic Images 

Eri Matsuyama1*, Megumi Takehara2, Du-Yih Tsai3 

1Department of Radiological Sciences, International University of Health and Welfare, Tochigi, Japan  
2Breast Center, Dokkyo Medical University Hospital, Tochigi, Japan 
3Department of Biomedical Engineering, Hungkuang University, Taichung City, Taiwan, China 

 
 
 

Abstract 
Classification of breast density is significantly important during the process 
of breast diagnosis. The purpose of this study was to develop a useful compu-
terized tool to help radiologists determine the patient’s breast density catego-
ry on the mammogram. In this article, we presented a model for automatical-
ly classifying breast densities by employing a wavelet transform-based and 
fine-tuned convolutional neural network (CNN). We modified a pre-trained 
AlexNet model by removing the last two fully connected (FC) layers and ap-
pending two newly created layers to the remaining structure. Unlike the 
common CNN-based methods that use original or pre-processed images as 
inputs, we adopted the use of redundant wavelet coefficients at level 1 as in-
puts to the CNN model. Our study mainly focused on discriminating between 
scattered density and heterogeneously dense which are the two most difficult 
density categories to differentiate for radiologists. The proposed system achieved 
88.3% overall accuracy. In order to demonstrate the effectiveness and useful-
ness of the proposed method, the results obtained from a conventional 
fine-tuning CNN model was compared with that from the proposed method. 
The results demonstrate that the proposed technique is very promising to 
help radiologists and serve as a second eye for them to classify breast density 
categories in breast cancer screening. 
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1. Introduction 

Breast cancer is the most commonly occurring cancer in women and the second 
most common cancer overall. There were over 2 million new cases in 2018 [1]. 
American Cancer Society screening guidelines for the early detection of breast 
cancer vary depending on a woman’s age and risk [2]. Screening mammography 
is the primary imaging modality for the early detection of breast cancer. It has 
been shown to reduce breast cancer mortality by 38% - 48% among participants 
who were actually screened [3]. Masses and microcalcification clusters that ap-
pear in mammographic images are an important early sign of breast cancer. 
Mammographic images are evaluated by human readers and the reading process 
is monotonous, tiring, lengthy, and costly [4]. Moreover, due to the high varia-
bility of tumor shape, size, and the low contrast between tumor and surrounding 
breast tissues, manual classification yields significant classification error, in par-
ticular, false positives, thereby resulting in an unnecessarily large number of bi-
opsies. To cope with this issue, many researchers have been working on devel-
opment of computer-aided detection and diagnosis (CAD) systems for mam-
mography [5]-[9]. 

CAD systems utilize image processing technique and pattern recognition 
theory to detect and classify abnormalities in mammographic images, which can 
provide an objective view to the radiologists [8] [9]. The abnormalities in 
mammographic images include microcalcification, masses, architecture distor-
tion, and asymmetry. Traditional CAD systems use handcrafted features based 
on prior knowledge and expert guidance. Although the traditional CAD systems 
demonstrate superior detection for breast cancers when used in combination 
with radiologists, they also significantly increase recall rate and have significant 
differences in false positives [10]. Therefore, accurate detection of breast cancer 
has remained challenging.  

Recent advances in machine learning have opened up an opportunity to ad-
dress the challenging issue of early detection of breast cancer using deep learning 
(DL) methods. DL has attracted much attention in many fields, such as image 
recognition and biomedical image analysis. Convolutional neural network 
(CNN) is one of the most popular algorithms for DL and has been successfully 
applied to various fields and has achieved state-of-the-art performance in image 
recognition and classification [11] [12]. After its success, CNN is also exploited 
in medical fields, such as image processing and CAD [13] [14] [15] [16], and it 
has reached or even surpassed human performance in image detection and clas-
sification. Many studies in medical fields have attempted to apply CNN to ana-
lyze mammographic images [17]-[26]. These studies mainly deal with the detec-
tion of microcalcifications [21] [23] and the classification of malignancy/benignancy 
for masses/lesions [19] [20] [26]. In particular, classification of breast density, 
which is an established risk marker for breast cancer, is a more difficult task than 
detection of microcalcifications.  

According to the fifth edition of the American College of Radiology’s Breast 
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Imaging Reporting and Data System (BI-RADS) lexicon [27], there are four cat-
egories for breast density: 1) almost entirely fatty, 2) scattered areas of fibrog-
landular density (or scattered density), 3) heterogeneously dense, 4) extremely 
dense. Of these 4 categories, assessment of almost entirely fatty and extremely 
dense breasts is highly consistent. However, there is greater variability distin-
guishing scattered density from heterogeneously dense parenchyma [26] [28] 
[29]. 

In general, CNN performs image classification task directly on raw image pix-
els expressed in the spatial domain. However, in this case, the spectral informa-
tion content of the image is not utilized in the classification. We consider that 
further improving image classification performance can be achieved by incor-
porating spectral feature information enhancing invariance of image features 
[30]. In this work, we aim to construct an automatic classification system for 
breast density using a CNN model with wavelet transform (WT) for input data. 
As inputs to the CNN, we adopted the use of redundant wavelet coefficients of 
the segmented images instead of using original images. Our work focused on 
distinguishing between the two most difficult to distinguish BI-RADS density 
categories, namely, scattered density vs. heterogeneously dense. In order to 
demonstrate the effectiveness and usefulness of the proposed method, the results 
obtained from a conventional fine-tuning CNN model was compared with that 
from the proposed method. 

The remaining of this paper is organized as follows. Section 2 describes the 
image data set used in the experiment and the algorithm of the proposed me-
thod. Section 3 presents the experimental results and comparison with a com-
monly used CNN model. Section 4 brings the discussion of the results. Section 5 
draws the conclusion of this work. 

2. Material and Methods 

We utilized AlexNet [31] which is a well-known CNN model for classification of 
breast density. The AlexNet, which has been pre-trained with ImageNet [32], 
consists of five convolutional layers and three fully connected (FC) layers. In this 
work, we constructed a new CNN network by utilizing the earlier layers of the 
pre-trained AlexNet. The dataset used, extraction of image spectral information 
using wavelet transforms, and the architecture of the proposed fine-tuned CNN 
model are described below. 

2.1. Dataset 

The image dataset used was mammogram X-ray DICOM images acquired from 
The Cancer Imaging Archive (TCIA) [33]. TCIA is a large archive of medical 
images of cancer, accessible for public download. Thus, ethics issues do not arise 
in this work and the requirement to obtain informed consent was waived.  

The dataset used include images with or without microcalcification/mass. It 
contains benign and malignant cases with verified pathology information. In this 
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study, 650 images each of scattered density and heterogeneously dense (a total of 
1300 images, up to 2 images from the same patient) were collected. Out of the 
collected images, 585 images each were used for re-training (a total of 1170 im-
ages) and 65 images each (a total of 130 images) were used for validation/testing. 
The collected images were manually segmented by a certified breast specialist to 
remove non-breast tissue areas. Because the collected images vary in dimensions, 
the segmented images are not the same size. Figure 1 shows an example of the 
segmented images. 

2.2. Extraction of Image Spectral Information Using Wavelet  
Transforms 

In this study, two-dimensional (2D) WT technique was used for extracting spec-
tral information of original images. In the medical fields, 2D WT has been ap-
plied to data compression, image enhancement, noise removal, etc. [34]. In the 
wavelet analysis, an image is initialized at level 0. The image is decomposed into 
four components of level 1: one low frequency component and three high fre-
quency components. A smoothed image can be obtained from the low frequency 
component (low-low component: LL) and the detailed images can be obtained 
from the three high frequency components, i.e., low-high (LH), high-low (HL) 
and high-high (HH) components. Therefore, low frequency component and 
high frequency components are also referred to as smoothed component and 
detailed components, respectively. Decomposition is further performed on the 
LL component. When the decomposition is continuously performed, the resolu-
tion of the image decreases accordingly. More details about the WT can be 
found in [35]. 

In general, when WT is performed on a given image of size N × N, the sizes of 
the four decomposed components are reduced to N/4 × N/4. One of the shortcom-
ings of the decimated WT is that it is not shift-invariant. As a result, disappearance  
 

 

Figure 1. Example of the segmented images. (a) Scattered density (benign); image size 
1386 × 2874 pixels, (b) Scattered density (malignant); image size 1986 × 3840 pixels, (c) 
Heterogeneously dense (benign); image size 810 × 2292 pixels, (d) Heterogeneously dense 
(malignant); image size 2316 × 4392 pixels. 
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of the outline of the decomposed images may occur. To overcome this issue, in 
this work we used a redundant discrete WT (RDWT) method. Unlike the con-
ventional WT, the RDWT does not perform down-sampling operations. Thus, 
the four components at each level are the same size as the original image of level 
0. The basic algorithm of the RDWT is that it applies the transform at each point 
of the image and saves the detailed coefficients and uses the approximation coef-
ficients for the next level. The size of the coefficients array does not diminish 
from level to level [34] [35]. There are different wavelet basis functions like haar 
wavelet, daubechies wavelet, biorthagonal spline wavelet, coiflet wavelet, meyer 
wavelet, etc. In this study, daubechies order 2 (db2) was used. There is a reason 
for using db2. Since db2 is a compactly supported orthogonal wavelet, we con-
sider that the coefficient values which might be able to distinguish features of 
interest can be obtained. 

Figure 2 shows an example of 2D level 1 redundant wavelet decomposition. 
Figure 2(a) shows an original image and four-component images of the redun-
dant wavelet transform at level 1. Figure 2(b) and Figure 2(c) are the combina-
tion of LL, LH and HL component images and the combination of three identic-
al original images, respectively. 

2.3. Architecture of the Proposed Fine-Tuning Convolutional  
Neural Network 

CNN re-training was implemented using MATLAB running on a desktop com-
puter system with the following specifications: Intel (R) Xeon (R) CPU E5 3.6 
GHz and a NVIDIA GeForce GTX 1080Ti graphics. Input data to the network  
 

 

Figure 2. Redundant discrete wavelet decomposition and combination of input data. (a) 
Level 1 wavelet decomposition. (b) Combination of LL, LH and HL component images. 
(c) Combination of three identical original images. 

https://doi.org/10.4236/ojmi.2020.101002


E. Matsuyama et al. 
 

 

DOI: 10.4236/ojmi.2020.101002 22 Open Journal of Medical Imaging 
 

was the wavelet coefficients obtained from original mammographic images. 
AlexNet input starts with 227 by 227 by 3 images (3 channels). Thus, the col-
lected images varying in size (see Figure 1) were resized to a smaller resolution 
of 227 × 227 using bicubic interpolation. Wavelet coefficients used as 3-channel 
input data in the proposed method were a combination of LL, LH, and HL 
components at level 1. To compare with the proposed method, the pixel values 
of 3 identical, original mammographic images were also used as inputs to the 
same network. 

The re-training plus fine-tuning steps employed in our proposed method are 
described as follows. 

Step 1: Remove the last two FC layers from the pre-trained AlexNet model. 
Step 2: Build two new FC layers. Apply dropout with a probability of 50% 

immediately prior to each of the two FC layers to randomly deactivate the units. 
This gives different weights in each re-training process and results in increasing 
generalization performance. Apply L2 norm regularization to each layer to pre-
vent over-learning and to improve generalization performance.  

Step 3: The two newly built FC layers are appended to the remaining structure 
of AlexNet model which has been pre-learned on ImageNet database [32]. 

Step 4: The wavelet coefficients of LL, LH, and HL components at level 1 are 
considered as inputs to the modified model for re-training and valida-
tion/testing. As a result, a modified CNN model, our proposed model, is con-
structed. 

We applied 10-fold cross-validation for the network re-training: dividing all 
the 1300 collected images randomly into 10 sets with an equal number of images 
in each set, each time using nine sets (1170 images) for re-training a leaving one 
set (130 images) for validation/testing. The validation set was used to check the 
accuracy of the re-training process and to determine if there is an overfitting. In 
the re-training process, optimization of the hyper-parameters was performed 
using a stochastic gradient descent method. Here, Cross entropy cost function 
was used. Mini-batch size was 30. We adjusted the weight learn rate factor and 
bias learn rate factor to speed up the learning in the new final layers. For choos-
ing the optimal number of epochs, accuracy was validated after each iteration 
round. Re-training will be stopped after ten consecutive iterations when the ac-
curacy is no longer improving. 

Figure 3 shows the flow chart of the proposed method. Figure 3(a) is the 
pre-trained AlexNet model which was designed for a 1000-class classification 
task. Figure 3(b) is the basic architecture of the proposed method. The input of 
the proposed network used for classify two categories is wavelet coefficients of 
mammographic images.  

3. Results 

Two confusion matrices for classifying two categories of breast density, i.e., 
scattered density (DB2) and heterogeneously dense (DB3) are given in Figure 4.  
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Figure 3. CNN flowchart for breast density classification in mammography. (a) Pre-trained 
networks. (b) Proposed method. 
 

 

Figure 4. Confusion matrix for two categories of breast density, scattered density (DB2) 
and heterogeneously dense (DB3). (a) Results obtained using wavelet coefficients (pro-
posed method). (b) Results obtained using the compared method. 
 
Figure 4(a) and Figure 4(b) show the results obtained from the proposed me-
thod and that obtained from the compared method, respectively. A confusion 
matrix is the most widely used quantitative measure for evaluation of the accu-
racy of a classification. It shows the relation between classification result and 
ground truth. Precision and recall shown in the figure are used as evaluation in-
dices obtained from the confusion matrix. The values shown in the figure are the 
average of the values obtained by 10-fold cross-validation. Overall accuracy 
achieved 88.3% for the proposed method as compared to 85.4% for the com-
pared method. Student’s t-test was used, and a statistically significant difference 
(P < 0.01) was observed. 

Figure 5 shows the receiver operating characteristic (ROC) curves and the 
area under the curve (AUC) of the two breast-density categories obtained from 
the proposed method and the compared method. Figure 5(a) and Figure 5(b) 
are the results of scattered density and heterogeneously dense, respectively. As  
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Figure 5. ROC curves obtained from the proposed method and the compared method. (a) Scattered density. (b) Heterogeneously 
dense. 

 
shown in the figures, The AUC of DB2 and BD3 obtained by the proposed me-
thod was 0.964, respectively, and that by the compared method was 0.948, re-
spectively. 

Figure 6 shows an example for verifying the effectiveness of the proposed 
method. Figure 6(a) is an original image. Figure 6(b) and Figure 6(c) show the 
96 visualized features extracted from the first convolutional layer when wavelet 
coefficients (LL, LH and HL components) and the original image were used as 
inputs, respectively. Similarly, Figure 6(d) and Figure 6(e) are 256 visualized 
features extracted from the fifth convolutional layer when the wavelet coeffi-
cients and the original image were used, respectively. 

4. Discussion 

As shown in Figure 4, the proposed method achieved an overall accuracy of is 
88.3% as compared to the compared method of 85.4%. The proposed method 
showed a statistically significant difference (P < 0.01), and suggesting its effec-
tiveness. The recall of BD2 of the proposed method and that of the compared 
method were 88.5% and 86.6%, respectively. Similarly, the recall of BD3 of the 
proposed method and that of the compared method were 88.2% and 84.3%. As 
for the precision of BD2 and BD3, the proposed method achieved 88.2% and 
88.4%, the compared method reached 84.7% and 86.3%, respectively. As a whole, 
the proposed method outperforms the compared method in terms of recall and 
precision.   

Oshima et al. [36] used AlexNet model to classifying four categories of mam-
mary gland density in mammograms and the accuracy achieved 82.3%. Koshi-
daka et al. [37] reported a method for automatic classification of mammary 
gland density in mammograms using CNN model. In this report, three categories  
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Figure 6. An example verifying the effectiveness of the proposed method. (a) Original 
image. (b) and (c) 96 image features extracted from the first convolutional layer when 
wavelet coefficients and the original images are used as input, respectively. (d) and (e) 256 
image features extracted from the fifth convolutional layer when wavelet coefficients and 
the original images are used as input, respectively. 
 
except category 1 (almost entirely fatty) were classified using 93 cases. The accu-
racy achieved 86.0%. The image data used in the present study are different from 
the two mentioned studies, thus, it might not simply make a general compari-
son. Nevertheless, these results suggest the potential superiority of the proposed 
method. 

It is obvious from Figure 5 that the ROC curves for BD2 and BD3 using the 
proposed method show higher true positive rates when false positive rates are 
low as compared to the compared method. The corresponding average AUCs are 
0.964 and 0.948, respectively. The results indicate that the proposed method 
outperforms the compared method. Mohamed et al. [26] investigated a deep 
learning-based approach using CNN to classify DB2 and DB3 categories. In their 
report, a total of 22,000 images were used. The AUC was 0.9421 when trained on 
7000 images. Since the datasets used in this investigation and in our study are 
different, it may not simply compare the results obtained by the two methods. In 
spite of this situation, the effectiveness of the proposed method is demonstrated. 

Figure 6 gives an overview of visualized features that the proposed network 
learned. It can be seen from Figure 6 that the proposed network detects more 
detailed features at deeper layers. It is obvious from Figure 6(b) and Figure 
6(c), with the use of the proposed method, the wavelet coefficients show good 
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response to some specific kernels. In contrast, when using the compared me-
thod, the original image responds to almost all kernels, however, the degree of 
activation is considerably low. Figure 6(d) and Figure 6(e) show that more im-
age features were detected when the proposed method was used. Same tendency 
was visually verified at the second to fourth convolutional layers. Thus, it is rea-
sonable to say that whether effective features can be finally extracted or not de-
pends on the selected information inputting to the initial layer of the CNN mod-
el employed. The comparison of our results to that obtained from the methods 
reported in the literature [26] [36] [37] suggest the superiority of the proposed 
method and its potential for improving the accuracy of classification of breast 
density categories. 

Our study has some limitations. First, the wavelet basis function used was db2. 
It is undeniable that the use of other basis functions may lead to better results. 
We plan to investigate the effect on classification performance by selecting other 
wavelet basis functions and pursue to design a new architecture to further im-
prove classification performance. Second, in this work, we used the pre-trained 
AlexNet model to classify breast density. In our future, we plan to utilize other 
CNN architectures, such as GoogLeNet, ResNet and SENet for classification 
performance comparison. Third, the number of images used for re-training was 
limited to 1170 images. Increase in the number of training images is necessary 
for further studies. 

5. Conclusion 

In this work, we proposed a fine-tuning method that utilized the pre-trained 
network based on AlexNet model. We modified the pre-trained AlexNet model 
by removing the last two fully connected layers and appending two newly 
created layers to the remaining structure. Unlike the common CNN-based me-
thods, we adopted the use of level 1 redundant wavelet coefficients as inputs to 
the network. Experimental results demonstrate that the proposed method 
achieves encouraging classification performance in differentiating scattered den-
sity and heterogeneously dense. We believe that our proposed method will pro-
vide a promising computerized toolkit to help radiologists and serve as a second 
eye for them to classify breast density categories in breast cancer screening. 

Acknowledgements 

This work was supported in part by JSPS KAKENHI (Grant-in-Aid for Scientific 
Research) Grant Number 18K15641. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this paper. 

References 
[1] World Cancer Research Fund International (2018) Breast Cancer Statistics.  

https://doi.org/10.4236/ojmi.2020.101002


E. Matsuyama et al. 
 

 

DOI: 10.4236/ojmi.2020.101002 27 Open Journal of Medical Imaging 
 

https://www.wcrf.org/dietandcancer/cancer-trends/breast-cancer-statistics  

[2] American Cancer Society (2017) Breast Cancer Facts & Figures 2017-2018. Ameri-
can Cancer Society, Inc., Atlanta, GA. 

[3] Broeders, M., Moss, S., Nyström, L., et al. (2012) The Impact of Mammographic 
Screening on Breast Cancer Mortality in Europe: A Review of Observational Stu-
dies. Journal of Medical Screening, 19, 14-25.  
https://doi.org/10.1258/jms.2012.012078 

[4] Ribli, D., Horváth, A., Unger, Z., Pollner, P. and Csabai, I. (2018) Detecting and 
Classifying Lesions in Mammograms with Deep Learning. Scientific Reports, 8, Ar-
ticle No. 4165. https://www.nature.com/articles/s41598-018-22437-z  
https://doi.org/10.1038/s41598-018-22437-z 

[5] Baker, J.A., Rosen, E.L., Lo, J.Y., et al. (2003) Computer-Aided Detection (CAD) in 
Screening Mammography: Sensitivity of Commercial CAD Systems for Detecting 
Architectural Distortion. American Journal of Roentgenology, 181, 1083-1088. 
https://doi.org/10.2214/ajr.181.4.1811083 

[6] Karahaliou, A.N., Boniatis, I.S., et al. (2008) Breast Cancer Diagnosis: Analyzing 
Texture of Tissue Surrounding Microcalcifications. IEEE Transactions on Informa-
tion Technology in Biomedicine, 12, 731-738. 
https://doi.org/10.1109/TITB.2008.920634 

[7] Eltonsy, N.H., Tourassi, G.D. and Elmaghraby, A.S. (2007) A Concentric Morphol-
ogy Model for the Detection of Masses in Mammography. IEEE Transactions on 
Medical Imaging, 26, 880-889. https://doi.org/10.1109/TMI.2007.895460 

[8] Tang, J., Rangayyan, R.M., Xu, J., El Naqa, I. and Yang, Y. (2009) Computer-aided 
Detection and Diagnosis of Breast Cancer with Mammography: Recent Advances. 
IEEE Trans on Information Technology in Biomedicine, 13, 236-251. 
https://doi.org/10.1109/TITB.2008.2009441 

[9] Li, Y., Chen, H., Gao, L. and Ma, J. (2016) A Survey of Computer-aided Detection 
of Breast Cancer with Mammography. Journal of Health & Medical Informatics, 7, 
Article ID: 100238. https://doi.org/10.4172/2157-7420.1000238 

[10] Harvey, H. (2018) Why Deep Learning May Be Best for Breast.  
https://towardsdatascience.com/why-deep-learning-may-be-best-for-breast-7725d1
440fde  

[11] Lawrence, S., Giles, C.L., Tsoi, A.C. and Back, A.D. (1997) Face Recognition: A 
Convolutional Neural-Network Approach. IEEE Transactions on Neural Networks, 
8, 98-113. https://ieeexplore.ieee.org/document/554195/  
https://doi.org/10.1109/72.554195 

[12] Pan, S. and Yang, Q. (2010) A Survey on Transfer Learning. IEEE Transactions on 
Knowledge and Data Engineering, 22, 1345-1359.  
https://ieeexplore.ieee.org/document/5288526/  
https://doi.org/10.1109/TKDE.2009.191 

[13] Suzuki, K. (2017) Survey of Deep Learning Applications to Medical Image Analysis. 
Medical Imaging Technology, 35, 212-226. 

[14] Kooi, T., van Ginneken, B., Larssemeijer, N. and den Heeten, A. (2017) Discrimi-
nating Solitary Cysts from Soft Tissue Lesions in Mammography Using a Pretrained 
Deep Convolutional Neural Network. Medical Physics, 44, 1017-1027.  
https://www.ncbi.nlm.nih.gov/pubmed/28094850  
https://doi.org/10.1002/mp.12110 

[15] Lekadir, K., Galimzianova, A., Betriu, A., et al. (2017) A Convolutional Neural 
Network for Automatic Characterization of Plaque Composition in Carotid Ultra-

https://doi.org/10.4236/ojmi.2020.101002
https://www.wcrf.org/dietandcancer/cancer-trends/breast-cancer-statistics
https://doi.org/10.1258/jms.2012.012078
https://www.nature.com/articles/s41598-018-22437-z
https://doi.org/10.1038/s41598-018-22437-z
https://doi.org/10.2214/ajr.181.4.1811083
https://doi.org/10.1109/TITB.2008.920634
https://doi.org/10.1109/TMI.2007.895460
https://doi.org/10.1109/TITB.2008.2009441
https://doi.org/10.4172/2157-7420.1000238
https://towardsdatascience.com/why-deep-learning-may-be-best-for-breast-7725d1440fde
https://towardsdatascience.com/why-deep-learning-may-be-best-for-breast-7725d1440fde
https://ieeexplore.ieee.org/document/554195/
https://doi.org/10.1109/72.554195
https://ieeexplore.ieee.org/document/5288526/
https://doi.org/10.1109/TKDE.2009.191
https://www.ncbi.nlm.nih.gov/pubmed/28094850
https://doi.org/10.1002/mp.12110


E. Matsuyama et al. 
 

 

DOI: 10.4236/ojmi.2020.101002 28 Open Journal of Medical Imaging 
 

sound. IEEE Journal of Biomedical and Health Informatics, 21, 48-55.  
https://ieeexplore.ieee.org/document/7752798/  
https://doi.org/10.1109/JBHI.2016.2631401 

[16] Shin, H.-C., Roth, H.R., Gao, M., et al. (2016) Deep Convolutional Neural Networks 
for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and 
Transfer Learning. IEEE Transactions on Medical Imaging, 35, 1285-1298.  
https://ieeexplore.ieee.org/document/7404017/  
https://doi.org/10.1109/TMI.2016.2528162 

[17] Kooi, T., Litjens, G., van Ginneken, B., et al. (2017) Large Scale Deep Learning for 
Computer Aided Detection of Mammographic Lesions. Medical Image Analysis, 35, 
303-312. https://doi.org/10.1016/j.media.2016.07.007 

[18] Becker, A.S., Marcon, M., Ghafoor, S., et al. (2017) Deep Learning in Mammogra-
phy: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detec-
tion of Breast Cancer. Investigative Radiology, 52, 434-440. 
https://doi.org/10.1097/RLI.0000000000000358 

[19] Arevalo, J., Gonzáleza, F.A., Ramos-Pollán, R., et al. (2016) Representation Learning 
for Mammography Mass Lesion Classification with Convolutional Neural Net-
works. Computer Methods and Programs in Biomedicine, 127, 248-257.  
https://doi.org/10.1016/j.cmpb.2015.12.014 

[20] Jadoon, M.M., Zhang, Q., Haq, I.U., Butt, S. and Jadoon, A. (2017) Three-Class 
Mammogram Classification Based on Descriptive CNN Features. BioMed Research 
International, 2017, Article ID: 3640901. https://doi.org/10.1155/2017/3640901 

[21] Samala, R.K., Chan, H.-P., Hadjiiski, L., Cha, K. and Helvie, M.A. (2016) 
Deep-Learning Convolution Neural Network for Computer-Aided Detection of 
Microcalcifications in Digital Breast Tomosynthesis. Proceedings of SPIE, 9785, 
1-7. https://doi.org/10.1117/12.2217092 

[22] Samala, R.K., Chan, H.-P., Hadjiiski, L., et al. (2016) Mass Detection in Digital 
Breast Tomosynthesis: Deep Convolutional Neural Network with Transfer Learning 
from Mammography. Medical Physics, 43, 6654-6666. 
https://doi.org/10.1118/1.4967345 

[23] Wang, J., Yang, X., Cai, H., et. al. (2016) Discrimination of Breast Cancer with Mi-
crocalcifications on Mammography by Deep Learning. Scientific Reports, 6, Article 
No. 27327. https://www.nature.com/articles/srep27327  
https://doi.org/10.1038/srep27327 

[24] Kallenberg, M., Petersen, K., Nielsen, M., et al. (2016) Unsupervised Deep Learning 
Applied to Breast Density Segmentation and Mammographic Risk Scoring. IEEE 
Transactions on Medical Imaging, 35, 1322-1331.  
https://doi.org/10.1109/TMI.2016.2532122 

[25] Dubrovina, A., Kisilev, P., Ginsburg, B., Hashoul, S. and Kimmel, R. (2016) Com-
putational Mammography Using Deep Neural Networks. Computer Methods in 
Biomechanics and Biomedical Engineering: Imaging & Visualization, 6, 243-247.  
https://www.tandfonline.com/doi/abs/10.1080/21681163.2015.1131197  
https://doi.org/10.1080/21681163.2015.1131197 

[26] Mohamed, A.A., Berg, W.A., Peng, H., et al. (2018) A Deep Learning Method for 
Classifying Mammographic Breast Density Categories. Medical Physics, 45, 314-321.  
https://www.ncbi.nlm.nih.gov/pubmed/29159811  
https://doi.org/10.1002/mp.12683 

[27] America College of Radiology (2019) ACR BI-RADS Atlas 5th Edition.  
https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads  

https://doi.org/10.4236/ojmi.2020.101002
https://ieeexplore.ieee.org/document/7752798/
https://doi.org/10.1109/JBHI.2016.2631401
https://ieeexplore.ieee.org/document/7404017/
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1016/j.media.2016.07.007
https://doi.org/10.1097/RLI.0000000000000358
https://doi.org/10.1016/j.cmpb.2015.12.014
https://doi.org/10.1155/2017/3640901
https://doi.org/10.1117/12.2217092
https://doi.org/10.1118/1.4967345
https://www.nature.com/articles/srep27327
https://doi.org/10.1038/srep27327
https://doi.org/10.1109/TMI.2016.2532122
https://www.tandfonline.com/doi/abs/10.1080/21681163.2015.1131197
https://doi.org/10.1080/21681163.2015.1131197
https://www.ncbi.nlm.nih.gov/pubmed/29159811
https://doi.org/10.1002/mp.12683
https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads


E. Matsuyama et al. 
 

 

DOI: 10.4236/ojmi.2020.101002 29 Open Journal of Medical Imaging 
 

[28] Berg,W.A., Campassi, C., Langenberg, P. and Sexton, M.J. (2000) Breast Imaging 
Reporting and Data System: Inter- and Intraobserver Variability in Feature Analysis 
and Final Assessment. American Journal of Roentgenology, 174, 1769-1777. 
https://doi.org/10.2214/ajr.174.6.1741769 

[29] Winkler, N.S., Raza, S., Mackesy, M. and Birdwell, R.L. (2015) Breast Density: Clin-
ical Implications and Assessment Methods. RadioGraphics, 35, 316-324. 
https://doi.org/10.1148/rg.352140134 

[30] Matsuyama, E. and Tsai, D.-Y. (2018) Automated Classification of Lung Diseases in 
Computed Tomography Images Using a Wavelet Based Convolutional Neural 
Network. Journal of Biomedical Science and Engineering, 11, 263-274.  
https://file.scirp.org/pdf/JBiSE_2018102416370696.pdf   
https://doi.org/10.4236/jbise.2018.1110022 

[31] Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017) ImageNet Classification with 
Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90. 
https://doi.org/10.1145/3065386 

[32] Deng, J., Dong, W., Socher, R., et al. (2009) ImageNet: A Large-Scale Hierarchical 
Image Database. 2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion, Miami, FL, 20-25 June 2009, 2-9.  
https://ieeexplore.ieee.org/document/5206848/  
https://doi.org/10.1109/CVPR.2009.5206848 

[33] The Cancer Imaging Archive Collections (2019) Frederick National Laboratory for 
Cancer Research. https://www.cancerimagingarchive.net  

[34] Matsuyama, E., Tsai, D.-Y., Lee, Y., et al. (2013) A Modified Undecimated Discrete 
Wavelet Transform Based Approach to Mammographic Image Denoising. Journal 
of Digital Imaging, 26, 748-758.  
https://link.springer.com/article/10.1007/s10278-012-9555-6   
https://doi.org/10.1007/s10278-012-9555-6 

[35] Daubechies, I. (1992) Ten Lectures on Wavelets. The Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA. https://doi.org/10.1137/1.9781611970104 

[36] Oshima, A., Kamiya, N., Shinohara, N., et al. (2019) Automatic Classification of 
Mammary Gland Density in Mammograms Using AlexNet. Medical Imaging and 
Information Sciences, 36, 59-63. 

[37] Koshidaka, M., Enomoto, K., Teramoto, A., et al. (2019) Preliminary Study on the 
Automated Classification of Breast Density in Mammogram Using Deep Convolu-
tional Neural Network. Medical Imaging and Information Sciences, 36, 88-92.  

 
 

https://doi.org/10.4236/ojmi.2020.101002
https://doi.org/10.2214/ajr.174.6.1741769
https://doi.org/10.1148/rg.352140134
https://file.scirp.org/pdf/JBiSE_2018102416370696.pdf
https://doi.org/10.4236/jbise.2018.1110022
https://doi.org/10.1145/3065386
https://ieeexplore.ieee.org/document/5206848/
https://doi.org/10.1109/CVPR.2009.5206848
https://www.cancerimagingarchive.net/
https://link.springer.com/article/10.1007/s10278-012-9555-6
https://doi.org/10.1007/s10278-012-9555-6
https://doi.org/10.1137/1.9781611970104

	Using a Wavelet-Based and Fine-Tuned Convolutional Neural Network for Classification of Breast Density in Mammographic Images
	Abstract
	Keywords
	1. Introduction
	2. Material and Methods
	2.1. Dataset
	2.2. Extraction of Image Spectral Information Using Wavelet Transforms
	2.3. Architecture of the Proposed Fine-Tuning Convolutional Neural Network

	3. Results
	4. Discussion
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

