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Abstract 
Coverage of nominal 95% confidence intervals of a proportion estimated 
from a sample obtained under a complex survey design, or a proportion esti-
mated from a ratio of two random variables, can depart significantly from its 
target. Effective calibration methods exist for intervals for a proportion de-
rived from a single binary study variable, but not for estimates of thematic 
classification accuracy. To promote a calibration of confidence intervals 
within the context of land-cover mapping, this study first illustrates a com-
mon problem of under and over-coverage with standard confidence intervals, 
and then proposes a simple and fast calibration that more often than not will 
improve coverage. The demonstration is with simulated sampling from a 
classified map with four classes, and a reference class known for every unit in 
a population of 160,000 units arranged in a square array. The simulations in-
clude four common probability sampling designs for accuracy assessment, 
and three sample sizes. Statistically significant over- and under-coverage was 
present in estimates of user’s (UA) and producer’s accuracy (PA) as well as in 
estimates of class area proportion. A calibration with Bayes intervals for UA 
and PA was most efficient with smaller sample sizes and two cluster sampling 
designs. 
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1. Introduction 

Accuracy assessment is an important step in any land cover mapping project 
(Congalton, 2001; Stehman & Foody, 2019). An estimate of accuracy is typically 
derived from a comparison between the classified map cover class of a unit and a 

How to cite this paper: Magnussen, S. 
(2021). Calibration of a Confidence Interval 
for a Classification Accuracy. Open Journal 
of Forestry, 11, 14-36. 
https://doi.org/10.4236/ojf.2021.111002 
 
Received: September 30, 2020 
Accepted: January 17, 2021 
Published: January 20, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/

  Open Access

https://www.scirp.org/journal/ojf
https://doi.org/10.4236/ojf.2021.111002
https://www.scirp.org/
https://doi.org/10.4236/ojf.2021.111002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


S. Magnussen 
 

 

DOI: 10.4236/ojf.2021.111002 15 Open Journal of Forestry 
 

reference land cover class assigned either after a field visit to the unit, or after a 
supervised classification by trained interpreters of an image of the same unit 
rendered in a substantially higher resolution than used for the map production 
(Khatami, Mountrakis, & Stehman, 2016; McRoberts et al., 2018). Regardless, to 
be objective, free of bias, and independent of the classification process, it is im-
portant that accuracy statistics are derived from a sample of units obtained un-
der a probability sampling design (Stehman, 1999). That is, the sample inclusion 
probability of each unit to be sampled is known prior to sampling. The sample 
inclusion probabilities are used as weights to obtain design-consistent estimators 
of accuracy and their variances (Cochran, 1977). 

Simple random or systematic sampling with post-stratification by map class, 
stratified random sampling, and one- and two-stage cluster sampling are the most 
popular choices of sampling designs for accuracy assessment (Morales-Barquero, 
Lyons, Phinn, & Roelfsema, 2019; Olofsson et al., 2014; Wulder, Franklin, 
White, Linke, & Magnussen, 2006). The sample size for this endeavor is typically 
a compromise between purely statistical considerations about the anticipated 
accuracy and a maximum acceptable standard error (Barth & Ståhl, 2011; Dob-
bertin & Biging, 1996; Stehman, 2012). Pros and cons of sampling designs for 
accuracy assessments have been detailed (Stehman, 1999). Recommendations 
with regards to design, sample size, and statistics are followed by many, yet, a 
review by Morales-Barquero et al. (2019) indicated that the use of probability 
sampling is still not the norm. Only approximately 30% of the land cover classi-
fication studies reviewed published statistics sufficient for reproducing results. 

Estimates of accuracy are, as a rule, presented as the proportion of correct 
classifications or as the proportion of correct classification given either a map or 
a reference class (Czaplewski, 2003). Alternative metrics used to describe accu-
racy of fuzzy (soft) classifications (Binaghi, Madella, Montesano, & Rampini, 
1997; Ricotta, 2004) and classification of multi-unit objects (Stehman & Wick-
ham, 2011) are beyond the scope of this exposé. The accuracy can be reported by 
thematic class (map or reference), or as the overall accuracy. Design-specific es-
timators of accuracy and their variances have been worked out and are now 
widely available (Breidt & Opsomer, 2017; Czaplewski, 1994; Fattorini, 2015; 
Olofsson et al., 2014). 

It is also considered good practice to provide a confidence interval for a point 
estimate of accuracy. A common choice is a 95% confidence interval (Olofsson 
et al., 2014; Stehman & Foody, 2019). The correct interpretation is that in re-
peated sampling under the same design, the true but unknown accuracy will lie 
between the limits of an estimated interval 95% of the time (Cochran, 1977). In 
land-cover accuracy assessments, the standard method for the construction of a 
confidence interval is to assume a normal or a t-distribution of the point esti-
mate with a standard deviation equal to the obtained estimate of the margin of 
error, i.e. the square root of the estimated variance divided by the sample size 
(Newcombe, 1998). Such confidence intervals only achieve a nominal coverage 
(viz. the proportion of intervals that include the true unknown accuracy) asymp-
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totically with independent observations (Esty, 1982; Miao & Gastwirt, 2004). In 
smaller samples or with proportions near the limits of 0 and 1, a coverage based 
on an assumed distribution can be poor (Agresti & Caffo, 2000; Korn & Grau-
bard, 1998; Wendell & Schmee, 2001). For proportions derived from a univariate 
binary variable we have many alternative estimators for the upper and lower 
limits of a confidence interval with improved performance over intervals com-
puted with the standard method (Newcombe, 1998). For complex survey de-
signs, Franco, Little, Louis, & Slud (2019) reported important improvements in 
coverage of nominal 95% confidence intervals of a proportion when they used 
Wilson- and Bayes-type intervals, and sample sizes corrected to the nominal 
sample size divided by the design-effect. 

Resampling methods have also been employed in pursuit of improving cover-
age of a confidence interval for a proportion, but improvements are only realized 
when the resampling is consistent with the sampling design generating the sam-
ple data (Rao & Wu, 1988; Shao, 1996). With an unknown target distribution of 
quantiles, success is not ascertained with standard bootstrap methods (Antal, 
2011; Chambers & Dorfman, 2003; Conti & Marella, 2014). Jackknife based in-
tervals may also suffer from over-coverage (Román-Montoya, Rueda, & Arcos, 
2008). Full Bayesian methods have been tried but typically also result in 
over-coverage and a different inference (e.g. Finley, Banerjee, Ek, & McRoberts, 
2008). A pseudo Bayesian empirical likelihood approach proposed by Rao & Wu 
(2010) appears promising but also requires complex computations. 

It is rare, however, to find an accuracy assessment of a land-cover mapping 
project that acknowledges the potential of poor coverage of confidence intervals 
for point estimates. The problem of poor coverage is compounded when an ac-
curacy statistic is derived from a joint distribution of two correlated binary va-
riables or estimated from a ratio of two correlated random counts (Chambers & 
Dorfman, 2003; Fodé & Louis-Paul, 2014; Miao & Gastwirt, 2004). On this 
background, the objective of this study is to encourage use of a simple and fast 
method for computing well-calibrated confidence intervals for point estimates of 
thematic accuracy and area proportions. The encouragement comes in the form 
of promising results from simulations with a stochastic classification process 
with four land-cover classes and a Bayes-type confidence interval with a uniform 
prior. Intervals of this type were recommended for complex surveys by Franco et 
al. (2019). Their recommendation, however, is restricted to a single univariate 
binary variable, and may not extend to a set of class-specific bivariate correlated 
binary variables as encountered in a land-cover mapping project. A re-assessment 
for application in a land-cover accuracy assessment is called for. 

2. Material and Methods 
2.1. The Reference Map 

A fixed artificial reference map with four classes (A, B, C, and D) was created for 
160,000 equal sized square units in an array with 400 rows and 400 columns. The 
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proportions of units in classes A-D are, respectively, 0.10, 0.20, 0.30, and 0.40. 
The reference map portrays a mosaic of spatial clusters of different sizes and 
shapes dominated by a single class. This was achieved by a random draw of a 
matrix with 400 rows and 400 columns populated with standard normal 
unit-level values (z) drawn from a Gaussian matrix-distribution (Gupta & Na-
gar, 1999) with a first-order autoregressive (AR1) covariance structure along 
rows and columns. The AR1 parameter was set to 0.90 which means that the 
correlation between z-values separated by one unit along a row or a column is 
0.90 and 0.90r if separated by r units. The z-variate was then converted to class 
labels. A z-value less than or equal to the 10%-tile of a standard normal distribu-
tion was assigned to class A. Values between the 10%-tile and the 30%-tile were 
assigned to class B, and so on for the 60%- and 100%-tile (viz. infinity). The spa-
tial distribution of the four classes in the first 100 rows and 100 columns is 
shown separately for each class in Figure 1. 

2.2. Classification Process 

A correct map class was assigned to a unit based on the outcome of random 
draw from a binomial distribution with a probability provided by a reference 
class specific spatial latent accuracy distribution. Generalized beta distributions 
(McDonald & Xu, 1995; Tan, 1969) with a mean target accuracy of 0.88 for ref-
erence class A, 0.92 for class B, 0.78 for class C, and 0.75 for class D served as the 
marginal distributions of the latent classification accuracy (cf. Figure 2). 

 

 
Figure 1. Maps for reference classes A, B, C, and D. A black unit indicate the loca-
tion of a reference class (A, B, C, or D). Only the area covered by the first 100 rows 
and first 100 columns are shown. 
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Figure 2. Marginal distributions of the latent accuracy of a classification 
to a map class (A, B, C, D) given the reference class of a unit. 

 
For reference class A, 95% of the latent accuracies are between 0.77 and 0.98, 

for class B between 0.80 and 0.99, for class C between 0.60 and 0.95, and between 
0.57 and 0.93 for class D. A spatial autocorrelation in latent accuracies was im-
posed by a third-order moving average process (MA3) along rows and columns 
in the population. The expected autocorrelation in the binary outcome of a clas-
sification (1 for correct, 0 for incorrect) was hereafter 0.58, 0.30, and 0.07 for 
units separated by a row- or column-distance of one, two, and three units. No 
autocorrelation was imposed on units separated by four or more row (column) 
units. A sample of the binary outcome (correct = 1 (white), incorrect = 0 
(black)) of the classification is in Figure 3. The presence of short-range positive 
spatial autocorrelation in correct (and incorrect) classification outcome is ap-
parent and deemed more realistic than independence (Khatami, Mountrakis, & 
Stehman, 2017). 

In case of an incorrect classification, the map class was assigned with equal 
probability to one of the two most similar reference classes. The two most simi-
lar reference classes are the class to the right and to the left of a class when the 
four classes were connected to form a circle as in A-B-C-D-A. Classification re-
sults for the units in Figure 1 are shown in Figure 4. 

2.3. Sampling Designs 

Four commonly employed sampling designs are investigated. They are: semi- 
systematic sampling (ssyst), stratified random sampling (strat), one-stage, and 
two-stage cluster sampling (clust and clust2st). For each design, three sample 
sizes with n = 828, 414, and 207 units were employed. The largest sample size 
was determined as the sample size for a one-stage cluster sampling design with 
an intra-cluster binary correlation coefficient of 0.4 that in 95 out of 100 trials 
would generate a relative standard error less than or equal to 0.025 in an esti-
mate of producer’s accuracy for a reference class with an area proportion of 0.30 
(Fleiss, Levin, & Paik, 2013). The two other sample sizes represent 50% and 25% 
of the sample size deemed necessary to achieve the above target of precision. 
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Figure 3. Correct (white) and incorrect (black) classifications 
in the first 100 rows and 100 columns of the population. 

 

 
Figure 4. Classification outcome viz. map classes (black) for the first 100 rows and 100 
columns in the population. See Figure 1 for a comparison to corresponding reference 
classes. 

https://doi.org/10.4236/ojf.2021.111002


S. Magnussen 
 

 

DOI: 10.4236/ojf.2021.111002 20 Open Journal of Forestry 
 

The ssyst was executed by first subdividing the population into 1600 blocks of 
10 × 10 units followed by a random without replacement selection of n of these 
blocks and a random selection of a single unit within each selected block. 

In the stratified random sampling design, the population was stratified to map 
classes, i.e. to four strata. The known strata sizes in units were 23,512 (14.7%) for 
map class A, 35,452 (22.2%) for map class B, 46,848 (29.3%) for class C, and 
54,190 (33.8%) for class D. Stratum sample sizes were proportional to stratum 
sizes. Thus, with n = 828 stratum sample sizes were 121, 183, 243, and 281; for n 
= 414 they were 60, 91, 122, and 141. Finally, for n = 207 they were 39, 45, 61, 
and 71. Within a stratum, units were sampled at random without replacement. 

In the clust design the cluster size was 9 units arranged in an array of three 
rows and three columns. For a design with a sample size of n units, there are K = 
n ÷ 9 clusters. The K clusters were first aligned with a random set K of the n 
blocks selected for the ssyst design, and then a square cluster was formed as the 
set of 8 nearest within-block neighbours to a unit selected under ssyst. 

In the clust2st design, the cluster size was 36 units arranged in an array of six 
rows and six columns. A total of 9 units were sampled within each cluster. Thus, 
the number of clusters in clust (K) and clust2st is the same. The selection of 
clusters followed, apart from issues of scale, the procedure for clust. The 9 units 
from a 6 × 6 cluster were selected as in a systematic design with a sampling in-
terval of 4 units and a random start in one of the columns 1 to 4 in row 1 of a 
cluster. 

2.4. Estimators of Accuracy 

The following estimators of accuracy and area proportions are used: 
Overall accuracy (OA) is defined as the probability of a correct map classifica-

tion. It is estimated as the proportion of correct map classifications in the sample 
of n units. In other words, OA is the chance that a unit selected at random from 
a map is classified correctly. 

Producer’s accuracy (PA) is defined as the reference class specific (condition-
al) probability of a correct classification. It is estimated as the number of correct 
classifications in a reference class divided by number of sample units in the ref-
erence class. For both ssyst with a post-stratification, and the strat designs, the 
two counts are weighted sums over the map-classes with weights proportional to 
map-class strata sizes. For the two cluster designs, PA was computed on a per 
cluster basis and averaged over the K clusters. PA communicates the accuracy of 
the classification process applied to units of given reference class. 

User’s accuracy (UA) is defined as the map class specific (conditional) proba-
bility of a correct classification. It is estimated as the number of correct classifi-
cations in a map class divided by the number of sample units in the map class. 
For ssyst (with post-stratification) and strat UA is computed as the number of 
correct classifications in a map class divided by either the known sample size in a 
stratum in case of strat, or—in case of ssyst—by the realized number of sample 
units in the map post stratum class. UA for the two cluster designs was com-
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puted on a per cluster basis and averaged over the K clusters. UA provides a user 
of a map with the probability that the reference class of a unit in the map (the 
actual state) is the same as the one given in the map. 

Reference class area proportions (Pref) for ssyst and strat were computed as a 
weighted average of the number of sample units in a reference class divided by 
the overall sample size n. The weights were again proportional to the size of a 
map-class stratum. For clust and clust2st the area proportions were computed 
for each cluster and averaged over the K clusters. 

When an estimate of an accuracy could not be computed, due to a zero sam-
ple count in a given class, a correction by adding two successes and two failures 
as suggested by Agresti & Caffo (2000) was implemented. 

Analytical variance estimators are not presented in an effort to reduce the 
length of this section. All estimators have been detailed elsewhere (Stehman, 
1992; Stehman, 1997; Stehman, 2012; Stehman & Czaplewski, 1998; Stehman et 
al., 2009). For ssyst the estimator of variance for post-stratification by map class 
and simple random sampling within post-strata was employed. In all estimators 
of variance, accuracy estimates of either 0 or 1 were replaced by, 1/n, or n/(n + 
1), respectively. 

2.5. Confidence Intervals 

Standard nominal 95% confidence intervals for an estimate of accuracy was 
computed as 0.975,

ˆˆ dfp t aSE±  where p̂  is the sample-based estimate of accu-
racy, ˆaSE  is the analytical estimate of the standard error of p̂ , and 0.975,dft  is 
the 0.975 quantile in a student’s t-distribution with df degrees of freedom. Here 
df is the number of sample units in the denominator of the ratio estimator for 
p̂  minus one. Coverage of estimated confidence intervals (CCI95) was com-

puted as the proportion of estimated intervals (cf. sub-section on simulated 
sampling) for a given accuracy that include the true accuracy p.   

In pursuit of improved coverage, the estimated confidence intervals were re-
placed (calibrated) with Bayes intervals with a uniform prior. We could equally 
have chosen intervals of the types Wilson, Jeffrey or Clopper Pearson as their 
performance in this study and in that of Franco et al. (2019) was similar. Specif-
ically, a calibrated interval was equated to the 0.025 and 0.975 quantiles of a beta 
distribution with parameters 1correctnα = +  and 1sample correctn nβ = − +   where 

correctn  and samplen  are the adjusted class-specific number of correctly classified 
units and the class specific number of sample units, i.e. the numerator and deno-
minator used to obtain p̂ . Both correctn  and samplen  are derived from the actual 
counts ncorrect and nsample after a division by the square root of a sample specific 

estimate of the design effect ( ) ( )( )ˆ ˆ ˆ ˆ ˆeff des srsD var p var p= ÷  where ( )ˆ ˆdesvar p  

is the design-based estimator of variance of p̂ , and ( )ˆ ˆsrsvar p  is the estimated 
variance under a simple random sampling design (Fuller, 2011). The square root 
transformation was adopted because it significantly improved the chance that 
the coverage of a calibrated interval would be improved. The improvement is 
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ascribed to a reduction of a marked skewness of the distribution of ˆ
effD . Franco 

et al. also mention a bias in ˆ
effD  due to the fact that ˆ

effD  is a design-biased 
ratio of two random but correlated variances. 

Two examples detail how Bayes intervals differ from the standard intervals. 
Both cases are for PA in class A and a sample size of 207 units. The first example 
is with ssyst. The average standard 95% interval was from 0.77 to 0.99 and with 
PA estimated at 0.89 (true PA is 0.88) the coverage over the 2000 replications as 
0.88. The average of Bayes intervals is 0.79 to 0.96 (i.e. wider by 0.04) also with a 
coverage of 0.88. The changes to the lower and upper limit of a standard confi-
dence interval when it is replaces by a Bayes interval is illustrated in Figure 5. 
Even with changes to both ends, the overall coverage remained unchanged.  

The second example is with clust. PA was again estimated at 0.89 and the av-
erage of the standard intervals was from 0.78 to 0.98 with a coverage of just 0.75. 
After a calibration with Bayes intervals, the average interval was from 0.69 to 
0.96 (i.e. wider by 0.06) and coverage rose to 0.90. Figure 6 illustrates the 
changes from a calibration to the lower and upper endpoints of a standard in-
terval. While changes are apparent at both ends, they are much larger for the 
lower limit than for the upper limit. 

From here on end, the terms “significant” and “significantly” are used as short 
forms for “statistically significant at the 5% level or lower of a Type I error”. 

2.6. Simulated Sampling 

Simulated sampling from the fixed population of bivariate units with a reference 
class and a map class label was executed according to the twelve combinations of 
four designs and three sample sizes. Following the selection of a sample, the ac-
curacy statistics and their analytical variances were computed and 95% intervals 
(standard and calibrated) were obtained as outlined. This process was repeated 
2000 times. Afterwards, the empirical (Monte-Carlo) estimate of the standard 
error in an estimate of accuracy (or an area proportion) was obtained as the  

 

 
Figure 5. Case one: scatter of lower (left) and upper (right) limit of Bayes intervals plotted 
against corresponding standard interval limits. 
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Figure 6. Case two: scatter of lower (left) and upper (right) limit of Bayes intervals plot-
ted against corresponding standard interval limits. 

 
standard deviation of the 2000 available estimates, and the coverage of a confi-
dence interval computed as the proportion of intervals including the true accu-
racy (proportion). With 2000 replications a coverage below 0.94 or above 0.96 
would be statistically significant at the 0.05% level of a Type I error. 

3. Results 
3.1. Overall Accuracy (OA) 

On average over the 2000 replications, the estimate of OA was for all designs and 
sample sizes within 0.3% from the true value of 0.81 (Table 1). None of the ob-
served differences from the target value were statistically significantly different 
from 0 at the 5% level. 

Empirical standard errors (eSE) with ssyst and post-stratification to map 
classes and with strat were within 0.01 of each other. With these two designs, the 
empirical standard error increased with a decrease in sample size at the expected 
rate of one over the square root of n. The average of the analytical standard er-
rors (aSE) matched to within 7% the empirical estimates. Empirical standard er-
rors for clust and clust2st are, as expected, greater than for ssyst and strat. The 
average difference was 0.03. In relative terms, the difference decreased from ap-
proximately 20% with n = 828 to approximately 10% with n = 207. The average 
analytical estimate of standard error under clust and clust2st matched the em-
pirical estimate to within 10%. Coverage of estimated 95% confidence intervals 
fluctuated between 0.94 to 0.96 with no statistically significant departure from 
the nominal level of 0.95. An over-coverage was only encountered with the ssyst 
and strat designs, and under-coverage was only seen with the clust and clust2st 
designs. 

With sample sizes over 100, a calibration of confidence intervals for OA 
computed with standard methods is neither needed nor recommended. For illu-
stration only, Bayes uniform prior confidence intervals would have increased the 
over-coverage of ssyst-based intervals by 0.006, but leave the coverage of strat-, 
clust- and clust2st-based intervals nearly unchanged. 
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Table 1. Summary statistics of overall accuracy (OA). The true OA is 0.81. 

Design na OAb eSEc aSEd CCI95e 

ssyst 828 0.81 0.014 0.013 0.95 

strat 828 0.81 0.014 0.013 0.96 

clust 828 0.81 0.016 0.016 0.94 

clust2st 828 0.81 0.015 0.015 0.96 

ssyst 414 0.81 0.019 0.019 0.96 

strat 414 0.81 0.019 0.019 0.96 

clust 414 0.81 0.022 0.022 0.95 

clust2st 414 0.81 0.032 0.030 0.94 

ssyst 207 0.81 0.027 0.027 0.96 

strat 207 0.81 0.027 0.026 0.96 

clust 207 0.81 0.032 0.032 0.94 

clust2st 207 0.81 0.032 0.030 0.94 

aSample size in units; bOverall accuracy; cEmpirical standard error; dAverage analytical standard error; eCo-
verage of standard 95% confidence intervals. 

3.2. Producer’s Accuracy (PA) 

All estimates of PA were nearly unbiased. Estimates of apparent bias fluctuate 
between −0.3% and 0.0% with ssyst, between −0.5% and 0.0% with strat, and 
between −0.5% and +0.5% with clust and clust2st (Table 2). There was no trend 
in these estimates across classes, but smaller sample sizes typically generated a 
higher variability in tabled estimates. For the two cluster sampling designs, the 
apparent bias in PA for class A was statistically significant at the 5% level. 

With ssyst and strat, the average aSE was within ±10% of the eSE; with a larg-
er overestimation limited to the largest sample size and class A. In all other cas-
es, an underestimation of approximately 10% was the norm. Standard errors 
changed with sample size in agreement with expectations. With clust and 
clust2st and the two largest sample sizes, aSE and eSE were typically within 10% 
of each other, but also 10% to 30% greater than standard errors reported for 
ssyst and strat. Larger discrepancies between eSE and aSE were limited to the 
smallest sample size. In class A and clust, the average aSE underestimates the 
eSE by 14%, and in class B and clust2st the mean of aSE was 40% greater than 
the eSE. 

A combination of an apparent bias and aSEs that do not match the eSEs sets 
the stage for under- or over-coverage of estimated confidence intervals. Table 3 
confirms this. A coverage that was either significantly above or below the no-
minal value of 0.95 occurred in 27 out of 48 combinations of design × class × 
sample size. Class B had the highest number of significant departures (11 out of 
12) which agrees with the fact that coverage of a confidence interval computed 
by standard method deteriorates as the estimated proportion approaches the 
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limits of 0 and 1. Class A with the second highest PA also had the second highest 
number of significant cases of either over or under-coverage (9). In classes C and 
D, the number of significant departures was 5 and 2, respectively. 

 
Table 2. Summary Statistics of producer’s accuracy (PA). True PAs are 0.88 for class A, 0.92 for class B, 0.78 for class C, and 0.75 
for class D. 

  Class A Class B Class C Class D 

Design na PA eSEb aSEc PA eSE aSE PA eSE aSE PA eSE aSE 

ssyst 828 0.88 0.033 0.03 0.92 0.020 0.02 0.79 0.022 0.022 0.75 0.018 0.02 

strat 828 0.89 0.033 0.03 0.92 0.020 0.02 0.78 0.022 0.022 0.75 0.018 0.02 

clust 828 0.89 0.036 0.04 0.92 0.022 0.02 0.78 0.027 0.028 0.75 0.025 0.03 

clust2st 828 0.89 0.036 0.04 0.92 0.030 0.02 0.78 0.025 0.026 0.75 0.023 0.02 

ssyst 414 0.88 0.047 0.05 0.92 0.028 0.03 0.79 0.032 0.030 0.75 0.026 0.03 

strat 414 0.88 0.047 0.05 0.92 0.028 0.03 0.79 0.032 0.031 0.75 0.026 0.03 

clust 414 0.88 0.051 0.05 0.92 0.031 0.03 0.78 0.039 0.040 0.75 0.035 0.04 

clust2st 414 0.89 0.080 0.08 0.92 0.063 0.05 0.78 0.054 0.054 0.75 0.051 0.05 

ssyst 207 0.89 0.065 0.07 0.92 0.040 0.04 0.79 0.045 0.045 0.75 0.037 0.04 

strat 207 0.89 0.064 0.07 0.92 0.039 0.04 0.79 0.044 0.045 0.75 0.036 0.04 

clust 207 0.89 0.071 0.08 0.92 0.044 0.05 0.78 0.055 0.057 0.75 0.050 0.05 

clust2st 207 0.89 0.080 0.08 0.92 0.063 0.05 0.78 0.054 0.054 0.75 0.051 0.05 

aSample size in units; bEmpirical standard error; cAverage analytical standard error. 
 

Table 3. Coverage of nominal 95% confidence interval for PA estimated with standard methods (CCI95SE) and coverage of Bayes 
uniform prior 95% confidence intervals (CCI95BAY). Table entries marked with a star (*) have a coverage significantly different 
from 0.95 at the 5% level or lower. 

  Class A Class B Class C Class D 

Design n CCI95SE CCI95BAY CCI95SE CCI95BAY CCI95SE CCI95BAY CCI95SE CCI95BAY 

ssyst 828 0.93* 0.95 0.94 0.96 0.95 0.98* 0.96 0.98* 

strat 828 0.92* 0.96 0.93* 0.95 0.95 0.96 0.95 0.98* 

clust 828 0.90* 0.94 0.93* 0.94 0.93* 0.94 0.95 0.94 

clust2st 828 0.95 0.96 0.99* 0.97* 0.93* 0.94 0.94 0.95 

ssyst 414 0.92* 0.96 0.92* 0.96 0.96 0.97* 0.95 0.98* 

strat 414 0.91* 0.96 0.92* 0.97* 0.95 0.96 0.95 0.98* 

clust 414 0.88* 0.94 0.89* 0.94 0.93* 0.94 0.93* 0.94 

clust2st 414 0.95 0.94 0.98* 0.95 0.95 0.96 0.95 0.95 

ssyst 207 0.88* 0.88* 0.88* 0.93* 0.94 0.97* 0.95 0.98* 

strat 207 0.90* 0.89* 0.85* 0.93* 0.93* 0.97* 0.95 0.97* 

clust 207 0.75* 0.90* 0.86* 0.91* 0.92* 0.94 0.91* 0.93* 

clust2st 207 0.95 0.94 0.98* 0.95 0.95 0.96 0.95 0.95 
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The clust design accounted for most (11) of the significant departures, fol-
lowed by strat with 7, ssyst with 5, and clust2st with 4. The number of significant 
departures increased weakly with a decrease in sample size from 8 (n = 828) to 
10 (n = 207). Somewhat surprisingly, the calibration was least effective with the 
smallest sample size, and most effective with a sample size of 828 with just 3 sig-
nificant departures compared to 8 before the calibration. The result may reflect 
that an increase in sample size also improves the accuracy of an estimate of a de-
sign-effect. 

Following a calibration to Bayes posterior 95% confidence intervals, the num-
ber of significant departures from the nominal coverage dropped from 27 to 19. 
The calibration was most successful in classes A and B with just 3 and 5 
post-calibration departures from the target coverage. For class C, the calibration 
did not improve coverage, and in class D it worsened the coverage with a rise in 
the number of significant departures from 2 to 7. A calibration was most effec-
tive with cluster sampling in that the number of significant departures dropped 
from 15 to 4. In ssyst the calibration was counterproductive: the number of sig-
nificant departures from 0.95 increased from 5 to 8. In strat, calibration did not 
achieve any improvements. Even for two cases with an important under-coverage 
in class A (i.e. with strat, and ssyst and n = 207), the calibration did not address 
the under-coverage. 

If merely improving the coverage is deemed worthwhile, then the calibration 
achieved this in 25 cases, yet also worsened it in 14 cases. When under-coverage 
is considered as more serious than over-coverage, then there is ample support 
for a calibration. Of the 27 cases with a significant departure from the nominal 
coverage, 24 reported under-coverage. Post calibration, only 4 cases retained a 
significant under-coverage. In 9 cases, a calibration changed a non-significant 
departure from 0.95 into a significant over-coverage, almost exclusively in class 
D. 

3.3. User’s Accuracy (UA) 

Estimates of UA were nearly unbiased in classes B, C and D, but significantly 
underestimated by 1% to 3% in class A and the two cluster designs (Table 4). 
Analytical standard errors with the ssyst and strat designs were similar and 
within 5% of the analytical counterparts, yet with a clear tendency towards a 
slight overestimation in case of ssyst, and a slight underestimation in case of 
strat. Standard errors with clust were, as expected, greater than standard errors 
with ssyst and strat. In class A, the difference was approximately 80%, and ap-
proximately 50% in classes B, C, and D. The average of aSE was close the eSE in 
all classes and sample sizes with the exception of class A and a sample size of 
207. Here the average aSE is approximately 10% greater than the eSE. A more 
complex pattern emerges for clust2st with a substantial (~30%) overestimation 
in eSE for class A and an even greater (30% - 60%) underestimation in classes B, 
C, and D. 

Confidence intervals for user’s accuracy (UA) often (27 times out of 48) had 
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either a significant under-coverage (18 cases) or a significant over-coverage (9 
cases) (Table 5). Most cases (18) came from clust (6), and clust2st (12). Al-
though ssyst and strat only contributed 9 cases, they were all with a significant 
under-coverage. Settings with the smallest sample size accounted for 15 of the 25 
cases with a significant over- or under-coverage. 

 
Table 4. Summary Statistics of user’s accuracy (UA). True UAs are 0.60 for class A, 0.83 for class B, 0.80 for class C, and 0.89 for 
class D. 

  Class A Class B Class C Class D 

Design n UA eSE aSE UA eSE aSE UA eSE aSE UA eSE aSE 

ssyst 828 0.60 0.044 0.042 0.83 0.028 0.027 0.80 0.025 0.025 0.89 0.019 0.018 

strat 828 0.60 0.044 0.045 0.83 0.028 0.028 0.80 0.025 0.025 0.89 0.019 0.019 

clust 828 0.59 0.077 0.080 0.82 0.034 0.034 0.80 0.034 0.034 0.89 0.024 0.025 

clust2st 828 0.59 0.053 0.067 0.82 0.054 0.030 0.80 0.042 0.031 0.89 0.049 0.022 

ssyst 414 0.60 0.063 0.061 0.83 0.040 0.039 0.80 0.036 0.036 0.89 0.027 0.026 

strat 414 0.60 0.063 0.064 0.83 0.039 0.040 0.80 0.036 0.037 0.89 0.027 0.026 

clust 414 0.59 0.108 0.109 0.82 0.048 0.048 0.80 0.048 0.048 0.89 0.035 0.033 

clust2st 414 0.58 0.115 0.146 0.82 0.111 0.061 0.80 0.086 0.061 0.89 0.099 0.047 

ssyst 207 0.60 0.088 0.087 0.83 0.056 0.055 0.80 0.051 0.051 0.89 0.038 0.037 

strat 207 0.60 0.088 0.090 0.83 0.056 0.057 0.80 0.051 0.050 0.89 0.037 0.038 

clust 207 0.57 0.150 0.163 0.82 0.070 0.071 0.80 0.069 0.068 0.89 0.051 0.050 

clust2st 207 0.58 0.115 0.146 0.82 0.111 0.061 0.80 0.086 0.061 0.89 0.099 0.047 

 
Table 5. Coverage of nominal 95% confidence interval estimated for UA with standard methods and coverage of Bayes uniform 
prior 95% confidence interval based on the effective sample size neff. Table entries marked with a star (*) have a coverage that is 
significantly different from 0.95 at the 5% level or lower. 

  Class A Class B Class C Class D 

Design n CCI95SE CCI95BAY CCI95SE CCI95BAY CCI95SE CCI95BAY CCI95SE CCI95BAY 

ssyst 828 0.96 0.96 0.95 0.96 0.94 0.95 0.95 0.96 

strat 828 0.93* 0.94 0.95 0.95 0.95 0.95 0.95 0.95 

clust 828 0.94 0.95 0.94 0.93* 0.94 0.94 0.93* 0.94 

clust2st 828 0.86* 0.88* 1.00* 0.99* 0.99* 0.96 1.00* 0.97* 

ssyst 414 0.95 0.96 0.95 0.96 0.94 0.95 0.95 0.96 

strat 414 0.93* 0.95 0.95 0.95 0.94 0.95 0.96 0.97* 

clust 414 0.93* 0.98* 0.94 0.93* 0.94 0.92* 0.94 0.94 

clust2st 414 0.87* 0.94 1.00* 0.98* 0.99* 0.96 1.00* 0.97* 

ssyst 207 0.94 0.96 0.93* 0.95 0.93* 0.94 0.92* 0.96 

strat 207 0.93* 0.96 0.89* 0.95 0.93* 0.97* 0.89* 0.96 

clust 207 0.87* 0.87* 0.91* 0.92* 0.92* 0.91* 0.89* 0.91* 

clust2st 207 0.87* 0.94 1.00* 0.98* 0.99* 0.96 1.00* 0.97* 
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Bayes uniform prior confidence intervals had, overall, better coverage proper-
ties. The calibration reduced the number of significant departures (from 0.95) 
from 17 to 10; with an even split between under- and over-coverage. A calibra-
tion was most effective for the strat and clust2st designs, but nearly counterpro-
ductive for the clust design with 8 cases of a significant under-coverage com-
pared to 6 cases with standard confidence intervals. The calibration was most ef-
fective with the smallest sample size. Here it achieved a reduction from 12 to 7 
cases with a significant departure from the target coverage. 

On balance, the coverage of Bayes uniform prior confidence intervals was in 
26 cases closer to the 0.95 target than a standard confidence interval. Calibration 
also reduced the number of cases with a significant under-coverage from 18 to 
10. It only generated a single case with a significant over-coverage where there 
was none before. 

3.4. Reference Area Proportions (Pref) 

The average estimate of an area proportion was within 0.002 of the true value. 
No estimate of apparent bias was significant at the 5% level (Table 6). With ssyst 
(and post-stratification), the average aSE was within 0.001 from eSE. With strat, 
the average aSE was also close to the eSE but with an overestimation of 0.002 in 
class D and an underestimation of 0.002 in class A. Monte-Carlo simulations, 
with a multinomial distribution and true class proportions, suggest that with n = 
828 or n = 414 a difference between aSE and eSE of 0.002 would be significant at 
the 5% level, while a difference of 0.003 would be significant with n = 207. Ac-
cordingly, a significant underestimation of the empirical standard error was iso-
lated to settings with clust2st in classes A-C and sample sizes of 414 and 207 
units. With clust2st and sample size 828, the estimates of eSE and aSE were at 
most 0.001 apart. 

Coverage with a majority (37 of 48) of confidence intervals for Pref was be-
tween 0.94 and 0.96 (non-significant different from 0.95) (Table 7). Of the 11 
confidence intervals with a coverage deviating significantly from 0.95, seven ex-
hibited under-coverage and four over-coverage. Most of the cases with a cover-
age significantly different from 0.95 were with the strat and clust and sample 
sizes of 414 and 207 units. No significant departures from 0.95 were found with 
ssyst and only 2 with clust2st, both cases had over-coverage. 

For Pref a calibration of the standard confidence intervals was counterproduc-
tive. With Bayes uniform prior intervals, the number of cases with a significant 
over- or under-coverage rose from 11 to 39 with over-coverage. Seven cases, 
with a significant under-coverage in standard intervals had a significant 
over-coverage with Bayes intervals. In just six cases was the coverage of a Bayes 
interval closer to 0.95 than with standard interval, in 35 cases it was further 
away. 

4. Discussion 

A poor coverage of standard confidence interval for a proportion estimated from  
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Table 6. Summary Statistics of reference class proportions (Pref). True reference class proportions are 0.10 (A), 0.20 (B), 0.30 (C), 
and 0.40 (D). 

  Class A Class B Class C Class D 

Design n Pref eSEb aSEc Pref eSE aSE Pref eSE aSE Pref eSE aSE 

ssyst 828 0.10 0.008 0.007 0.20 0.008 0.007 0.30 0.011 0.011 0.40 0.011 0.011 

strat 828 0.10 0.008 0.007 0.20 0.008 0.008 0.30 0.011 0.011 0.40 0.010 0.011 

clust 828 0.10 0.024 0.024 0.20 0.026 0.026 0.30 0.029 0.028 0.40 0.041 0.041 

clust2st 828 0.10 0.022 0.020 0.20 0.023 0.022 0.30 0.024 0.023 0.40 0.037 0.036 

ssyst 414 0.10 0.011 0.010 0.20 0.011 0.011 0.30 0.016 0.016 0.40 0.016 0.016 

strat 414 0.10 0.012 0.011 0.20 0.011 0.011 0.30 0.016 0.016 0.40 0.014 0.016 

clust 414 0.10 0.034 0.033 0.20 0.037 0.037 0.30 0.041 0.039 0.40 0.059 0.057 

clust2st 414 0.10 0.051 0.042 0.20 0.052 0.045 0.30 0.053 0.047 0.40 0.077 0.074 

ssyst 207 0.10 0.015 0.015 0.20 0.015 0.015 0.30 0.022 0.022 0.40 0.023 0.022 

strat 207 0.10 0.017 0.015 0.20 0.015 0.015 0.30 0.022 0.023 0.40 0.020 0.023 

clust 207 0.10 0.048 0.047 0.20 0.052 0.054 0.30 0.058 0.058 0.40 0.083 0.083 

clust2st 207 0.10 0.051 0.042 0.20 0.052 0.045 0.30 0.053 0.047 0.40 0.077 0.074 

 
Table 7. Coverage of nominal 95% confidence interval estimated for Pref with standard methods and coverage of Bayes uniform 
prior 95% confidence interval based on the effective sample size neff. Table entries marked with a star (*) have a coverage that is 
significantly different from 0.95 at the 5% level or lower. 

  Class A Class B Class C Class D 

Design n CCI95SE CCI95BAY CCI95SE CCI95BAY CCI95SE CCI95BAY CCI95SE CCI95BAY 

ssyst 828 0.96 1.00* 0.96 1.00* 0.96 0.99* 0.96 0.99* 

strat 828 0.97* 1.00* 0.95 1.00* 0.96 0.99* 0.92* 0.98* 

clust 828 0.94 0.98* 0.94 0.98* 0.94 0.96 0.95 0.96 

clust2st 828 0.95 0.97* 0.95 0.96 0.96 0.96 0.96 0.96 

ssyst 414 0.96 1.00* 0.96 1.00* 0.95 0.99* 0.96 0.99* 

strat 414 0.97* 1.00* 0.95 1.00* 0.94 0.99* 0.91* 0.98* 

clust 414 0.92* 0.97* 0.94 0.98* 0.96 0.97* 0.95 0.96 

clust2st 414 0.96 0.98* 0.96 0.98* 0.97* 0.97* 0.95 0.96 

ssyst 207 0.96 1.00* 0.95 1.00* 0.95 0.99* 0.96 0.99* 

strat 207 0.96 1.00* 0.95 1.00* 0.94 0.99* 0.91* 0.97* 

clust 207 0.87* 0.98* 0.92* 0.97* 0.93* 0.97* 0.94 0.95 

clust2st 207 0.96 0.98* 0.96 0.98* 0.97* 0.97* 0.95 0.96 

 
a small sample size or a proportion close to either 0 or 1 is to be expected (Fleiss 
et al., 2013). Effective methods of calibration have been worked out for settings 
when either exact methods are feasible, or the distribution of the pivotal statistic 
is known (Newcombe, 1998). Unfortunately, these methods do not apply to es-
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timates of thematic accuracy obtained under some probability sampling designs 
because the sampling distribution of an estimated proportion is typically analyt-
ically intractable. Take, for example, the estimate of OA under stratified random 
sampling by map-class. First, the number of sample units by reference class in a 
map-class is distributed as per a multinomial given the known stratum sample 
size but unknown reference class proportions. Second, the number of correct 
classifications in a map class now depends not only on the unknown number of 
sample units by reference but also on the latent class specific accuracies asso-
ciated with sampled units. With settings as in this study, a normal, a beta, and an 
inverse Gaussian distribution would fit the sample distribution of OA equally 
well (based on Akaike’s information criterion); a formal test of a normal distri-
bution would have been rejected at the 0.01 level due to a negative skewness of 
−0.08 (D’Agostino, 1990). A spatially varying latent accuracy (Khatami et al., 
2017) with a limited range of autocorrelation made the simulated land-cover 
classification process realistic (Stehman & Wickham, 2011) but also makes the 
expected sampling distribution of an accuracy estimate analytically intractable. 
Our reliance on standard confidence interval with the implicit assumption of a 
normal distribution is therefore tenuous, in particular with regards to small 
sample sizes (Neyman, 1934). 

Calibration methods for confidence intervals proposed for complex sampling 
designs do not apply directly to inference about classification accuracy because 
they are tailored to a binary variable with a dependence structure limited to a 
positive intra-cluster correlation coefficient (see Franco et al., 2019, and refer-
ences therein). Hence, a fully effective and reliable calibration method for confi-
dence intervals of an accuracy statistic may not exist for land-cover map 
projects. The highly variable number and diversity of thematic classes, a multi-
tude of possible spatial covariance structures in both the reference map and the 
classification process, paired with typically relatively small affordable sample 
sizes for accuracy assessment (Congalton, 1991; Morales-Barquero et al., 2019; 
Olofsson, Foody, Stehman, & Woodcock, 2013) suggest that no single calibra-
tion will be overall best. 

In an application an analyst will, of course, not know if a calibration of confi-
dence intervals is successful or not and may stick with standard intervals or 
resort to computational-intensive resampling methods (Magnussen & Köhl, 
2002; Magnussen, Stehman, Corona, & Wulder, 2004). The performance of a ca-
libration method requires simulated sampling in populations with the map and 
reference class known for every unit in the population. A simulation study like 
this one is expedient given available software allowing us to introduce a spatial 
covariance structure at all levels, and distributions of the latent class specific 
probabilities of a correct classification (Gupta & Nagar, 1999; Li, 2007; White & 
Ghosh, 2009). Simulated sampling from two classified images, one of which is 
treated as a reference map, is even more expedient when available (Andersen, 
1998; Khatami et al., 2016). 

An across-the-board calibration of all confidence intervals in an accuracy as-
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sessment of a land-cover map product is neither warranted nor necessary. With 
sample sizes of 20 units or more per map class and the four sampling designs 
used here, there would be no strong impetus to calibrate a confidence interval 
for an OA. It is an open question whether this applies equally to designs with 
double sampling (Kalkhan, Reich, & Stohlgren, 1998; Westfall, Lister, Scott, & 
Weber, 2019), or to designs with a selection of units based on the distribution of 
remotely sensed auxiliary variables (Grafström, Saarela, & Ene, 2014; Pagliarella 
et al., 2016). The above recommendation for OA also applies, by and large, to Pref 
since the sampling distribution is approximately normal for sample sizes that are 
not too small (say > 20 in most rare class) and an area proportion above 0.05. 

For PA and UA, a calibration of confidence intervals is encouraged as the 
coverage, at least in this study, could—more often than not—be improved. Cali-
bration with Bayes intervals is obviously not a win-win, given a general tendency 
to widen the confidence interval with a concomitant over-coverage for standard 
intervals that achieved their nominal coverage. On balance, for risk adverse us-
ers/producers, a calibration seems in order. 

In sampling with a single binary variable, it is straightforward to compute the 
design effect for any design (Fuller, 2011) and from there Bayes intervals, as 
demonstrated recently by Franco et al. (2019)—with the caveat that an estimate 
of the design effect from a single sample will be biased as it is a ratio of two ran-
dom variables (variances). For estimates of multi-class thematic accuracies, we 
do not yet have a statistic for gauging the design efficiency. The proposed (nov-
el) square root transformation of an estimate of the design effect lacks a founda-
tion in theory. It has only intuitive appeal since the width of a confidence inter-
val has a stronger correlation with the square root of a variance that the variance 
in an assumed distribution for an estimated proportion. A search for more effi-
cient transformations firmer grounded in theory is recommended. 

A still popular measure of accuracy, the Kappa coefficient, was left out on 
purpose as repeated studies have shown that it is not what it pretends to be: a 
measure of accuracy corrected for chance agreement (Foody, 2020; Lin, Hedayat, 
Sinha, & Yang, 2002; Pontius & Millones, 2011). 

The main objective of this study is to encourage a calibration of confidence 
intervals for multi-class estimates of accuracy. A single simulation study is a 
start, but more concerted efforts on the side of statistical theory and methods are 
still needed. 

5. Conclusion 

A calibration of confidence intervals for sample based estimates of user’s and 
producer’s accuracy can be accomplished with a few additional statistics that are 
easy to compute. It is recommended to calibrate confidence intervals when the 
sample size in a specific combination of map and reference class drops below 20. 
The benefit is confidence intervals that are more likely to achieve the nominal 
coverage than a non-calibrated interval. 
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