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Abstract 
The Bitterlich Sampling (horizontal point sampling) is a common method in 
forest inventories. By this method, the Horvitz-Thompson estimator is used 
in a number of independent sampling points for the estimation of overall tree 
volume in a forest area/stand. In this paper, confidence intervals are con-
structed and evaluated using the normal approach and two bootstrap meth-
ods; the percentile method (Cα) and the bias-corrected and accelerated me-
thod (BCα). The simulation results show that the normal confidence interval 
has better coverage of true value at sample size 10. At sample sizes 20 and 30, 
it seems that there are no substantial differences in coverage between confi-
dence intervals, although it could be noted a small superiority of BCα method. 
At sample size 40, the coverage of the three confidence intervals is higher 
than the nominal coverage (95%). 
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1. Introduction 

Sampling in forest inventories is usually done by installing random points on the 
ground and selecting a group of trees around the points. Trees are generally se-
lected using the two most well-known forest sampling methods: the fixed-area 
plot sampling and Bitterlich Sampling (BS) or horizontal point sampling.  

In fixed area plot sampling, fixed shape and size are defined at each point 
(center) and are the basic sampling unit in which all the trees are measured 
(Kershaw Jr., Ducey, Beers, & Husch, 2016; Matis, 2004). In BS, the tree j is se-
lected in the sample if the random point i is at a distance crj from the tree, where 
rj is the radius of the circular surface (cross-section) of the tree at 1.30 m height 
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from the ground basal area and c is a constant, which is suitably selected to 
achieve a desired sampling density (Gregoire & Valentine, 2007; Roesch, Green, 
& Scott, 1993). The probability of selecting trees, by this method, is proportional 
to their basal area. The Horvitz-Thompson estimator can be used for parameter 
estimations such as the total volume of the forest area (Horvitz & Thompson, 
1952; Schreuder, Gregoire, & Wood, 1993). 

The distribution of total estimates from sampling with probability propor-
tional to size is unknown (Hájek, 1981), therefore estimating confidence inter-
vals based on the normal distribution may not be accurate. In forestry, many 
sampling designs with probability proportional to size (prediction) have a small 
sample size, so arising the question: how much accurate and consistent confi-
dence intervals can be estimated in these cases (Magnussen, 2001)? This is also 
happening for small-scale forest management several times, so for economic 
reasons non-large fixed-areas samples or Bitterlich sampling points are selected. 
The simple application of the bootstrap method gives reliable estimates of va-
riance for all regression estimators that have been used as well as for the Hor-
vitz-Thompson estimator of BS (Schreuder, Ouyang, & Williams, 1992). In the 
case of small sample sizes, the estimating confidence interval with bootstrap 
methods did not behave well (Schreuder & Williams, 2000). The nearest neigh-
bor techniques; parametric, bootstrap and jackknife variance estimators pro-
duced comparable results (McRoberts, Magnussen, Tomppo, & Chirici, 2011). 
Recent research (Lyons, Keith, Phinn, Mason, & Elith, 2018) revolves that the 
resampling procedure provided accurate estimates of error for remote sensing 
classification and accuracy assessment. In general, there seem to be no results for 
confidence intervals evaluation with BS and bootstrap methods.  

The purpose of the research is the evaluation of confidence intervals which 
have been created with Horvitz-Thompson estimator by applying the BS and 
utilizing bootstrap methods with small sample sizes. The results will be of great 
practical value because the data comes from a solid productive forest ecosystem. 

In the next chapter, the BS is described somewhat more extensively, since the 
method is unknown in general, apart from those dealing with forest ecosystems. 
Additionally, methods of constructing and evaluating confidence intervals are 
given and the dataset acquisition is described. In chapter 3, the results are given 
and discussed while conclusions are drawn in the 4th chapter. 

2. Methods and Data 

The BS can be described in various ways (Eriksson, 1995). The application of the 
method can be done (De Vries, 1986; Overton & Stehman, 1995) as follows: In a 
simple random or systematic way, we place a sample of n points on the forest 
area, of which we want to estimate the characteristic Y. From each sample point, 
we aim all the trees at 1.30 meters height above the ground (breast height), pro-
jecting an angle to diameter by means of an instrument (e.g. relaskop), making a 
complete (360˚) rotation around the point. Trees, whose diameter at the breast 
height is greater than the angle α, are considered to be trees of the sample. If the 
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diameter is equal to the projection of the angle α, there are ways in which it is 
judged whether these trees belong to the sample (De Vries, 1986; Kershaw Jr. et 
al., 2016). If yj is the volume of the trunk of the j-th tree, then the volume of all 
the trees (M) of the forest area is given by the  

1

M

j
j

Y y
=

= ∑ .                             (1) 

The Horvitz-Thompson estimator of Y (De Vries, 1986; Schreuder et al., 
1993) at the i-th sampling point is given by the following formula 

1

ˆ im

ij ij
j

Y FA y g
=

= ∑ ,                         (2) 

where F is the criterion of tree selection (Basal Area Factor, BAF), A is the area 
of the forest, ( ) 24ij ijg d= π  the tree basal area (the area of the cross-section at 
the breast height of the tree) of the j tree and mi the number of trees selected in 
the sampling point i. The probability of selection, ij ijg FAπ = , depends on tree 
basal area of the tree and therefore larger in volume trees have a greater proba-
bility of being selected in the sample.  

Although BS has many attractive features, the selected sample of trees at a sin-
gle sampling point is a sample-group of adjacent trees, with consequence Y val-
ues being correlated (Overton & Stehman, 1995). Better estimates of the charac-
teristics of the forest area are made by taking a number of n independent points. 
Then, the estimate of Y is given as 

1

ˆ ˆ
n

i
i

Y Y n
=

= ∑ ,                          (3) 

where îY  with 1,2, ,i n=   the estimate of Y at the point (Bitterlich unit) i 
with variance  

( ) ( )2 2
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where jjπ  is the probability of both trees j and j΄ being included in the sample. 
An unbiased variance estimator (Palley & Horwitz, 1961; Schreuder et al., 1993) 
is given by the formula 

( ) ( ) ( )
1

ˆ ˆ ˆ 1
n

i
i

V Y Y Y n n
=

= − −∑ .                  (5) 

The variance, as well as the Ŷ  estimates, can be easily generated (Schreuder 
et al., 1993), either considering BS as a special case of sampling with a probabili-
ty proportional to size, where the number of trees is a random variable (Palley & 
Horwitz, 1961) or considering it as a simple random sampling of the n from N 
clusters in the population (Schreuder, 1970).  

Both a normal and two bootstrap confidence intervals were estimated (Efron, 
1982; Efron & Tibshirani, 1993). The bootstrap intervals were calculated with the 
percentile method (Cα) and the bias-corrected and accelerated method (BCα). 

Assuming that Ŷ  is normally distributed, a confidence interval for Y with 
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coverage 1-α with α the level of significance is given as 

( )  ( )  ( )( )1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ, ,o up a aY Y Y z se Y Y z se Y= − + ,             (6) 

where zα/2 is the value of the standard normal distribution and  ( ).se  the esti-
mated standard error.  

The (1 − α) 100% confidence interval with the percentile method, Cα, is given 
by 

( ) ( ) ( )( )2 1 2
1̂

ˆ ˆ ˆ, ,a a
o upY Y Y Y −= ,                   (7) 

where ( )2ˆ aY  and ( )1 2ˆ aY −  the 100α/2 and 100(1-α/2) percentiles respectively of 
the bootstrap distribution. In the Cα interval, with BCα a correction is made for 
bias and skewness. Thus, the corresponding interval with BCα is estimated given 
by 

( ) ( ) ( )( )1 2
1̂

ˆ ˆ ˆ, ,a a
o upY Y Y Y= ,                    (8) 
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In the Equations (1) & (2), Φ (.) is the standard normal cumulative distribu-
tion function and 0 ˆˆ ,z a  are the coefficients for bias and acceleration.  

Finally, was calculated the percentage of confidence intervals covered by the Y 
parameter, the percentages miscoverage of Y on each side, the average width of 
the confidence intervals, as well as the coefficient of variation of the widths con-
fidence intervals.  

The data were obtained from the University Forest of Pertouli (39˚32'28''N 
21˚27'57''E) in Greece (Stamatellos, 1991), which is almost entirely covered by 
hybrid fir (Abies x borisii-regis Mattf). The tree selection angle from sampling 
points was 2˚18' and F = 4 m2∙ha−1 (Matis, 2004). A number of 203 random sam-
pling units of BS were considered as population and samples of n = (10, 20, 30 
and 40) were taken without replacement. The number of iterations was 5000 for 
the simulation and 1500 for the bootstrap resampling. The experiment was pro-
grammed with S-plus (Becker, Chambers, & Wilks, 1988; Venables & Ripley, 
2000) and with R (James, Witten, Hastie, & Tibshirani, 2013; Robinson & Ha-
mann, 2010; Team, 2013). 

3. Results and Discussion 

The results of the experiment are presented in Table 1. We note that for all con-
fidence intervals the total coverage of the real population value increases cor-
respondingly with the increase of the sample size. The opposite happens with the 
failure coverage percentages of the true value, which is constantly decreasing.  
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Table 1. Percentage (%) coverage failure of the true value Y, from the left (Lfcov) and 
from the right (Rfcov), % total coverage (Tcov), width of confidence intervals (Width) 
and widths coefficient of variation (CVwidth) as a function of the sample size (1 − a = 
0.95). 

Confidence Interval Estimation 
Sample Size 

10 20 30 40 

NCI* Lfcov 2.50 2.60 2.20 2.10 

 
Rfcov 4.70 4.20 3.60 2.60 

 
Tcov 92.80 93.20 94.20 95.30 

 
Width 1730 1199 960 852 

 
CV width 22.87 15.40 11.95 9.10 

Cα* Lfcov 3.45 3.50 2.50 2.15 

 
Rfcov 5.60 3.20 2.95 2.60 

 
Tcov 90.95 93.30 94.55 95.25 

 
Width 1653 1219 1010 890 

 
CV width 22.95 15.46 12.01 10.50 

BCα* Lfcov 3.85 3.35 2.70 2.50 

 
Rfcov 4.50 2.50 2.50 2.40 

 
Tcov 91.65 94.15 94.80 95.10 

 
Width 1681 1229 1015 895 

 
CV width 23.62 15.83 12.27 10.62 

*by NCI (Normal), Cα (percentile method) and BCα (the bias-corrected and accelerated method). 

 
The widths of confidence intervals as well as their variability decrease as the 
sample size increases for all estimated confidence intervals. Thus, the simulation 
iteration (5000) and sampling bootstrap (1500) numbers appear to be sufficient, 
ensuring consistency for all the estimates. With sample size 10, the overall cov-
erage of the normal confidence interval is better (92.8%) than the coverage of 
both bootstrap methods (90.95% and 91.65%), but the width (1730) of the nor-
mal interval is greater from the widths of the bootstrap methods (1653 and 
1681). At sample sizes, 20, 30 and 40 are not being observed significant differ-
ences in the overall coverage of the three confidence intervals, with the BCα 
method having slightly better coverage rates. The same is true for the confidence 
intervals widths, but now they are slightly smaller in the normal confidence in-
terval. The variability of the confidence intervals is approximately the same 
(15.40, 15.46, 15.83). The 95% nominal coverage approach appears to be be-
tween sample sizes 30 - 40 since in size 40 and the three confidence intervals it 
exceeds 95% nominal coverage. By comparing the two bootstrap methods, BCα 
has a slightly better coverage up to sample size 30 and, correspondingly, slightly 
larger widths in confidence intervals. 

With t-approach, the probability of coverage reached 94.5% for the 10-sample 
size, but at the same time significantly increased the confidence interval width 
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(21.35%). Thus z-approach was preferred in order to keep at the same level the 
confidence interval widths up to less than 5%. A research result of Zhou & Dinh 
(2005) for the mean of the sample shows that if ˆ 0.3nγ < , where γ̂  is the 
skewness of the sample, the confidence interval which is based on t-approximation 
is good enough. The study found ˆ 0.15nγ <  where ˆ 0.46γ =  and could be 
verified this result by considering BS as a simple random sampling n of N clus-
ters of the population. The bootstrap confidence intervals were not well behaved 
for sample size 10, and this comes to an agreement with a relative result by 
Schreuder & Williams (2000) for small sample sizes, although for different va-
riables of the forest stand.  

4. Conclusion 

In conclusion, all three methods of constructing confidence intervals, to a large 
extent, almost approximate the nominal coverage in sample size 30, while pro-
viding satisfactory coverage (>93%) in sample size 20. The normal confidence 
interval still has satisfactory coverage in the sample size 10, while for the same 
sample size, the bootstrap methods do not seem to perform well. The results 
came from a particular forest ecosystem with a clustered spatial distribution of 
trees and continuous management. However, it also needs research from other, 
different forest ecosystem structures in order to better evaluate the same confi-
dence intervals, but also other types of confidence intervals suggested by the li-
terature.  

Acknowledgements 

This research has been financially supported by General Secretariat for Research 
and Technology (GSRT) and the Hellenic Foundation for Research and Innova-
tion (HFRI) (Scholarship Code: 1319). 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The New S Language: A Program-

ming Environment for Data Analysis and Graphics. In Wadsworth and Brooks/Cole 
Advanced Books and Software. Berlin: Springer. 

De Vries, P. G. (1986). Sampling Theory for Forest Inventory: A Teach-Yourself Course. 
Berlin: Springer Science & Business Media.  
https://doi.org/10.1007/978-3-642-71581-5 

Efron, B. (1982). The Jackknife, the Bootstrap, and Other Resampling Plans (Vol. 38). 
CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM.  
https://doi.org/10.1137/1.9781611970319 

Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. London: CRC 
Press.  

https://doi.org/10.4236/ojf.2020.101005
https://doi.org/10.1007/978-3-642-71581-5
https://doi.org/10.1137/1.9781611970319


G. Stamatellos, A. Georgakis 
 

 
DOI: 10.4236/ojf.2020.101005 64 Open Journal of Forestry 
 

Eriksson, M. (1995). Design-Based Approaches to Horizontal-Point-Sampling. Forest 
Science, 41, 890-907.  

Gregoire, T. G., & Valentine, H. T. (2007). Sampling Strategies for Natural Resources and 
the Environment. London: Chapman and Hall/CRC.  
https://doi.org/10.1201/9780203498880 

Hájek, J. (1981). Sampling from a Finite Population (p. 247). New Yok: Marcel Dekker, 
Inc. 

Horvitz, D. G., & Thompson, D. J. (1952). A Generalization of Sampling without Re-
placement from a Finite Universe. Journal of the American Statistical Association, 47, 
663-685. https://doi.org/10.1080/01621459.1952.10483446 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical 
Learning with Applications in R. New York, Heidelberg, Dordrecht, London: Springer.  
https://doi.org/10.1007/978-1-4614-7138-7_1 

Kershaw Jr., J. A., Ducey, M. J., Beers, T. W., & Husch, B. (2016). Forest Mensuration 
(5th ed.). New York: John Wiley & Sons. https://doi.org/10.1002/9781118902028 

Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J., & Elith, J. (2018). A Comparison of 
Resampling Methods for Remote Sensing Classification and Accuracy Assessment. 
Remote Sensing of Environment, 208, 145-153.  
https://doi.org/10.1016/j.rse.2018.02.026 

Magnussen, S. (2001). Saddlepoint Approximations for Statistical Inference of PPP Sam-
ple Estimates. Scandinavian Journal of Forest Research, 16, 180-192.  
https://doi.org/10.1080/028275801300088288 

Matis, K. (2004). Forest Biometrics: II. Dendrometry (In Greek) (Vol. 2, 2nd ed.). Thes-
saloniki, Greece: Pegasus. 

McRoberts, R. E., Magnussen, S., Tomppo, E. O., & Chirici, G. (2011). Parametric, Boot-
strap, and Jackknife Variance Estimators for the k-Nearest Neighbors Technique with 
Illustrations Using Forest Inventory and Satellite Image Data. Remote Sensing of En-
vironment, 115, 3165-3174. https://doi.org/10.1016/j.rse.2011.07.002 

Overton, W. S., & Stehman, S. V. (1995). The Horvitz-Thompson Theorem as a Unifying 
Perspective for Probability Sampling: With Examples from Natural Resource Sampling. 
The American Statistician, 49, 261-268.  
https://doi.org/10.1080/00031305.1995.10476160 

Palley, M. N., & Horwitz, L. G. (1961). Properties of Some Random and Systematic Point 
Sampling Estimators. Forest Science, 7, 52-65. 

Robinson, A. P., & Hamann, J. D. (2010). Forest Analytics with R: An Introduction. Ber-
lin: Springer Science & Business Media.  
https://doi.org/10.1007/978-1-4419-7762-5_1 

Roesch, F. A., Green, E. J., & Scott, C. T. (1993). An Alternative View of Forest Sampling. 
Survey Methodology, Statistics Canada, 19, 199-204  

Schreuder, H. T. (1970). Point Sampling Theory in the Framework of Equal-Probability 
Cluster Sampling. Forest Science, 16, 240-246.  

Schreuder, H. T., & Williams, M. S. (2000). Reliability of Confidence Intervals Calculated 
by Bootstrap and Classical Methods Using the FIA 1-HA Plot Design.  
https://doi.org/10.2737/RMRS-GTR-57 

Schreuder, H. T., Gregoire, T. G., & Wood, G. B. (1993). Sampling Methods for Multire-
source Forest Inventory. New York: John Wiley & Sons. 

Schreuder, H. T., Ouyang, Z., & Williams, M. (1992). Point-Poisson, Point-PPS, and 
Modified Point-PPS Sampling: Efficiency and Variance Estimation. Canadian Journal 

https://doi.org/10.4236/ojf.2020.101005
https://doi.org/10.1201/9780203498880
https://doi.org/10.1080/01621459.1952.10483446
https://doi.org/10.1007/978-1-4614-7138-7_1
https://doi.org/10.1002/9781118902028
https://doi.org/10.1016/j.rse.2018.02.026
https://doi.org/10.1080/028275801300088288
https://doi.org/10.1016/j.rse.2011.07.002
https://doi.org/10.1080/00031305.1995.10476160
https://doi.org/10.1007/978-1-4419-7762-5_1
https://doi.org/10.2737/RMRS-GTR-57


G. Stamatellos, A. Georgakis 
 

 
DOI: 10.4236/ojf.2020.101005 65 Open Journal of Forestry 
 

of Forest Research, 22, 1071-1078. https://doi.org/10.1139/x92-142 

Stamatellos, G. (1991). Research of Forest Volume Estimation Possibilities with 
Two-Stages Sampling Designs (In Greek, with English Summary). Doctoral Thesis, 
Thessaloniki: Aristotle University of Thessaloniki. 

Team, R. C. (2013). R: A Language and Environment for Statistical Computing. 

Venables, W., & Ripley, B. D. (2000). S Programming. Berlin: Springer Science & Busi-
ness Media. https://doi.org/10.1007/978-0-387-21856-4 

Zhou, X. H., & Dinh, P. (2005). Nonparametric Confidence Intervals for the One- and 
Two-Sample Problems. Biostatistics, 6, 187-200.  
https://doi.org/10.1093/biostatistics/kxi002   

 
 

https://doi.org/10.4236/ojf.2020.101005
https://doi.org/10.1139/x92-142
https://doi.org/10.1007/978-0-387-21856-4
https://doi.org/10.1093/biostatistics/kxi002

	Normal and Bootstrap Confidence Intervals in Bitterlich Sampling
	Abstract
	Keywords
	1. Introduction
	2. Methods and Data
	3. Results and Discussion
	4. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

