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Abstract 
Tree height (H) in a natural stand or forest plantation is a fundamental varia-
ble in management, and the use of mathematical expressions that estimate H 
as a function of diameter at breast height (d) or variables at the stand level is a 
valuable support tool in forest inventories. The objective was to fit and pro-
pose a generalized H-d model for Pinus montezumae and Pinus pseudostro-
bus established in forest plantations of Nuevo San Juan Parangaricutiro, Mi-
choacan, Mexico. Using nonlinear least squares (NLS), 10 generalized H-d 
models were fitted to 883 and 1226 pairs of H-d data from Pinus montezumae 
and Pinus pseudostrobus, respectively. The best model was refitted with the 
maximum likelihood mixed effects model (MEM) approach by including the 
site as a classification variable and a known variance structure. The Wang and 
Tang equation was selected as the best model with NLS; the MEM with an 
additive effect on two of its parameters and an exponential variance function 
improved the fit statistics for Pinus montezumae and Pinus pseudostrobus, 
respectively. The model validation showed equality of means among the es-
timates for both species and an independent subsample. The calibration of 
the MEM at the plot level was efficient and might increase the applicability of 
these results. The inclusion of dominant height in the MEM approach helped 
to reduce bias in the estimates and also to better explain the variability among 
plots. 
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1. Introduction 

The height of trees (H; m) in forest stands or plantations (FP) is an attribute that 
is useful to calculate timber estimates, to evaluate site productivity at the stand 
or plot level, to project growth and yield scenarios, and to create distribution 
tables of usable products (Crecente-Campo et al., 2010; Santiago-García et al., 
2017; Santiago-García et al., 2020). In a forest inventory, measuring the H of all 
the trees within a sampling unit involves an important demand of resources, time, 
and effort; therefore, a subsample of tree heights is usually obtained (Mehtätalo, 
2005; Bronisz & Mehtätalo, 2020). 

A reliable and low-cost alternative for error reduction in tree height estima-
tion and to reduce the costs of measuring this variable in the field, is using local 
or generalized height—diameter (d; cm) models (Zambrano, Suarez, & Jerez, 
2001; Barrio, Álvarez, & Díaz-Maroto, 2004; Diéguez-Aranda, Barrio, Caste-
do-Dorado, & Álvarez, 2005). Besides, acquiring the data necessary to make cal-
culations at the population level does not imply additional costs, since these are 
mostly office work to further estimate the dimensions of the remaining trees in 
each plot, and the generalized expressions consider characteristics at the stand 
level (Diéguez-Aranda et al., 2005; Crecente-Campo et al., 2010; Gómez-García 
et al., 2015). 

The generalized H-d models also enable the evaluation of tree height re-
sponse to different growth conditions, forest management, or forest stand cha-
racteristics (Sharma & Parton, 2007; Crecente-Campo et al., 2010; Bronisz & 
Mehtätalo, 2020). Statistical fit of these models has been performed with non-
linear least squares (NLS) (Misir, 2010; García-Cuevas et al., 2013), mixed effects 
models (MEM) (Vargas-Larreta, Castedo-Dorado, Álvarez-González, Barrio-Anta, 
& Cruz-Cobos, 2009; Corral-Rivas, Álvarez-González, Crecente-Campo, & Cor-
ral-Rivas, 2014; Corral, Silva, & Quiñonez, 2019), and neural networks (Correia et 
al., 2018). 

The mathematical structure of MEMs is characterized by fixed and random 
parameters; the former is related to an average response of the data used, and the 
second represents the difference of the average plot with respect to each unit or 
classification variable (Sharma & Parton, 2007; Gómez-García et al., 2015). The 
application of MEM is a statistically improved alternative to NLS, which allows 
the inclusion of covariates that decrease the error and reduce the specific varia-
bility by classification level (Baty et al., 2015; Corral et al., 2019; Flores-Ayala et 
al., 2023). Consequently, the variability of the response (i.e. height) to different 
growth conditions can be efficiently explained and estimated with greater cer-
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tainty (Corral et al., 2019; Bronisz & Mehtätalo, 2020). In addition, they have 
been an effective alternative solution to the lack of independence of measure-
ments within a sampling unit (Calama & Montero, 2004; Corral et al., 2019) and 
for the reduction of the estimation error through the use of NLS in the optimiza-
tion of parameter estimates (Bronisz & Mehtätalo, 2020). 

In Mexico, owing to the practical utility of generalized H-d models in forest 
management, this type of structure has been fitted to different coniferous and 
broadleaf species in natural temperate forests in Durango (Vargas-Larreta et 
al., 2009; Corral-Rivas et al., 2014; Corral, Silva, & Quiñonez, 2019), Michoacán 
(García-Cuevas et al., 2013; Hernández et al., 2018), and Hidalgo (Hernández 
et al., 2015), as well as to even-aged forest stands in Ixtlán de Juarez, Oaxaca 
(Santiago-García et al., 2020) and in Ixhuacan de los Reyes, Veracruz (Hernández 
et al., 2020). However, to our knowledge, there is no research work that had 
been performed in pine plantations, in particular for the two species that are 
analyzed in this research, and it is anticipated that these results would be bet-
ter than those reported for natural forests owing to the homogeneity of forest 
plantations. 

In Michoacán, Mexico, pine species have been established in 16,000 ha of 
FPs (CONAFOR, 2018). Pinus pseudostrobus Lindl. and Pinus montezumae 
Lamb. are the most frequently used species as a result of their high growth 
rates, their potential to successfully expand the area already established, and 
consequently to increase Michoacán’s timber yield (Muñoz, Sáenz, García, 
Hernández, & Anguiano, 2011; Muñoz, Sáenz, García, Coria, & Muñoz, 2015). 
These two Pinus species play also a major role in the resin, sawmill, furniture, 
and handicrafts industries of Nuevo San Juan Parangaricutiro (NSJP) (González, 
Gasca, & Heredia, 2014). The objective of this research was to fit and propose a 
generalized H-d model for Pinus montezumae and Pinus pseudostrobus in the 
FPs of NSJP, Michoacán, Mexico with a mixed effects modelling approach. 

2. Materials and Methods 
2.1. Study Area 

The FPs evaluated are located in the forests of Nuevo San Juan Parangaricutiro, 
Michoacán, between 19˚17' and 19˚30'N and 102˚06' and 102˚17'W, at an alti-
tude ranging from 2000 to 3100 m. The region has a rugged terrain topography, 
with an extrusive igneous geology and an Andosol-type dominant soil—typical 
of the physiographic sub-province known as sierra Neovolcánica Tarasca. The 
Cw-type climate has a 1,500 mm average annual precipitation and 15˚C average 
temperature (INEGI, 2017). The study area is shown in Figure 1. 

2.2. Data Collection Methods 

In this research, fourteen 7 - 32 years old Pinus montezumae and thirty-four 7 - 
37 years old Pinus pseudostrobus plantations were analyzed. One-hundred  
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Figure 1. Area of distribution of the pine plantations that were evaluated. (a) Location of 
the Pinus pseudostrobus Lindl. and Pinus montezumae Lamb plantations evaluated, (b) 
location the Mexico in the North America, and (c) location of study area in the Mexico. 

 
ninety-one 400 m2 (20 × 20 m) quadrangular sampling plots were systematically 
located in these plantations. The d and H of each tree within each plot were 
measured, and the mean height (mH; m) was further calculated. The average 
maximum dominant height of the five tallest trees (dH; m) was estimated with 
the information from each plot, and this was defined according to the concept of 
dominant height that uses the 100 thickest trees per hectare (Alder, 1980); also, 
root mean square diameter (Msd; cm), basal area per plot (Ba; m2∙plot−1) and 
density (N; tree∙plot−1) were calculated. Table 1 shows the data descriptive statis-
tics. 

2.3. Data Analysis and Statistical Processing 

Ten generalized models used in similar studies were selected (Table 2). Seventy 
percent out of the 1261 and 1751 pairs of H-d data from Pinus montezumae and 
Pinus pseudostrobus, respectively, were randomly selected for statistical fitting. 
The remaining thirty percent of the data was used to validate the fitted models. 

In a first approach, the equations in Table 2 were fitted through the NLS, us-
ing the “nls” function in the R® software (R Core Team, 2021), in order to select 
a base model into which the random effects would be subsequently included. 
The most appropriate model was selected evaluating the statistical fitting and 
assuming observations independence (Temesgen et al., 2008). Meanwhile, the 
deviation in the estimates was determined based on the highest values of the 
coefficient of determination (R2, Equation (11)), the lowest values of root-mean- 
square error (RMSE, Equation (129), and the Akaike Information Criterion (AIC, 
Equation (13)) (Crecente-Campo et al., 2010; Corral et al., 2019; Bronisz & 
Mehtätalo, 2020). In addition, we verified the parameters significance (p > 0.05), 
and the parsimony of each structure was also considered (García-Cuevas et al., 
2013; Santiago-García et al., 2020). 
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Table 1. Descriptive statistics of the tree and plot variables used in the research. 

Statistics d H md mH dH Msd Ba N 
Pinus montezumae: 57 plots and 1261 data pairs 

Mean 17.43 9.17 17.44 9.17 12.46 18.02 0.62 24.70 
Minimum 1.85 2.00 10.15 2.86 4.25 10.66 0.18 7.00 
Maximum 46.40 29.00 37.59 25.86 29.00 37.82 1.45 40.00 

Standard deviation 7.04 4.21 5.33 3.63 4.42 5.34 0.33 8.07 
Variance sample 49.60 17.75 28.46 13.18 19.51 28.51 0.11 65.08 

Kurtosis 0.1 1.0 −0.1 2.0 0.7 −0.3 −0.1 −0.8 
Asymmetry coefficients 0.5 0.8 0.5 1.0 0.6 0.4 1.0 −0.2 

Pinus pseudostrobus: 134 plots and 1751 data pairs 
Mean 26.16 15.34 26.29 15.34 19.41 26.78 0.80 16.76 

Minimum 2.50 2.50 6.26 3.98 6.60 7.16 0.10 5.00 
Maximum 72.30 43.40 58.22 32.20 43.40 58.83 2.31 34.00 

Standard deviation 0.29 0.17 0.27 0.16 0.19 0.26 0.01 0.20 
Variance sample 12.48 7.38 11.36 6.90 7.93 11.08 0.40 8.32 

Kurtosis 155.80 54.40 129.10 47.57 62.85 122.74 0.16 69.19 
Asymmetry coefficients −0.5 −0.7 −0.6 −1.0 −0.6 −0.7 −0.3 −0.9 

d = diameter at breast height (cm). H = total height (m). md = mean diameter at breast height of the plot (cm). mH = mean height 
of the plot. dH = dominant height of the plot (m). Msd = mean square diameter (cm). Ba = basal area per plot (m2). N = number 
of trees per plot. 

 
Table 2. Generalized height-diameter equations (H-d) selected for the fitting. 

ID - Name Structure Reference 

1—Gaffrey (1988) ( ) 0 1

1
1 11.3 1.3 e

Msda
dH dH a

Msd d

 − 
   = + − + − 

 
 

Sánchez-González, Cañellas, & Montero 
(2007) and Hernández et al. (2015). 

2—Nilson (1999) 1

01 1
a

dHH
mda
d

=
  + −     

 Sánchez-González et al. (2007) and 
García-Cuevas et al. (2013). 

3—Chapman & Richards 
modified (2007) ( )

3

31 2
01.3 1 e

Naa a d MsdH a mH
 
 
 = + + −  Corral-Rivas et al. (2014) and Ercanli (2015). 

4—Mirkovic (1958) ( )
3

0 1 21.3 e
a
dH a a dH a Msd
−

= + + +  
García-Cuevas et al. (2013) and  
Santiago-García et al. (2020). 

5—Hui y Gadow (1993) 31 2
01.3

aa a dHH a dH d= +  
Vargas-Larreta et al. (2009) and 

García-Cuevas et al. (2013). 

6—Harrison et al. (1986) ( )
2

1
01 e 1 e

q d
a Msd dHH dH a

− 
= + − 

 
 

García-Cuevas et al. (2013) and  
Hernández et al. (2015). 

7—Temesgen and von  
Gadow modified (2004) 

( ) 32 4
0 11.3 aa aH a a Ba Msd d dH= + +  Vargas-Larreta et al. (2009) and  

Liu et al. (2017). 

8—Sharma and Parton (2007) ( ) 431 2
01.3 1 e

a a
a a Msd dH a dH −= + −  

Vargas-Larreta et al. (2009) and  
Santiago-García et al. (2020). 

9—Wang and Tang (1997) 
2

1e

01.3

a
da

H a dH

− 
 
  
 = +  

García-Cuevas et al. (2013) and  
Hernández et al. (2015). 

10—Schroeder y Álvarez II 
(2001) ( )

4

0 1 2 31.3 e
a
dH a a dH a Msd a Ba= + + − +  

Vargas-Larreta et al. (2009) and  
Corral et al. (2019). 

ID = model identifier; a0, a1 and a2 = parameters to be estimated; e = exponential function; d = diameter at breast height (cm); H = 
total height (m); md = mean diameter at breast height of the plot (cm); mH = mean height of the plot; dH = dominant height of 
the plot (m); Msd = mean square diameter (cm); Ba = basal area per plot (m2); and N = number of trees per plot. 

https://doi.org/10.4236/ojf.2024.143014


J. Hernández-Ramos et al. 
 

 

DOI: 10.4236/ojf.2024.143014 219 Open Journal of Forestry 
 

( )
( )

2
2 1

2
1

ˆn
i i

i

i
n
i i

y
R

y y

y
=

=

−

−
= ∑
∑

                      (11) 

( )2
1

1
ˆn

lii y
RM E

y
S

n
==

−

−
∑                    (12) 

( )2
12 l

ˆ
n

n
li iy

A
y

IC p n
n

=
 
 = ⋅ + ⋅
 
 

−∑                (13) 

where iy , ˆly  and iy  are the observed, estimated, and mean values, respec-
tively; n is the total number of data used in model fitting (Table 2); p refers to 
the number of parameters; and ln is the natural logarithm. 

Once the generalized H-d model was chosen from the models fitted, a classi-
fication variable corresponding to the plot was included additively in the model, 
using the MEM approach (for the MEM fit). This analysis would enable the in-
clusion of fixed effects and optional random effects; the former applies to the 
whole population and the latter are specific for each grouping level. In Addition, 
it reduces the random variability that NLS fails to explain, it groups the H re-
sponse per classification level, and it reduces the estimation bias by eliminating 
the initial conditions that influence the growth dynamics within each plot (Ca-
lama & Montero, 2004; Mehtätalo, de-Miguel, & Gregoire, 2015; Ferraz et al., 
2018). 

The structure of the nonlinear models was: ( ),ij ij ij ijY f X θ ε= + ; where f  is 
the nonlinear function (selected from Table 2), ijY  and ijX  are the ith-de- 
pendent and -independent observation, taken from the ith classification unit 
(plot), and ijθ  is the 1r×  parameter vector—where r corresponds to the num-
ber of parameters of the model—and it is specific to the j-th classification level. 
Furthermore, this vector can be divided for the fixed and random parameters 
defined as ij i i iA B bθ γ= + . iA  and iB  matches the r p×  and r q×  size ma-
trices, for the fixed and random effects, respectively; these effects are specific to 
each level. Meanwhile, γ  and ib  match the 1p×  and 1q×  vector of the fixed 
and random parameters, respectively (Baty et al., 2015; Corral et al., 2019). 

The MEM was fitted using the “nlme” function of R® (R Core Team, 2021) 
and the marginal approximation of maximum likelihood of the empirical best 
linear unbiased prediction (EBLUP) (Mehtätalo & Lappi, 2020). In addition, 
three variance functions were evaluated to correct for heteroscedasticity of the 
residuals and stabilize the variance of the inconsistent error in the estimates: 1) 
power function (varPower, Equation (14)); 2) exponential function (varExp, Equ-
ation (15)); and 3) constant and power function (varConstPower, Equation (6)) 
(Pinheiro & Bates, 2000; Zuur, Ieno, Walker, Saveliev, & Smith, 2009; Gałecki & 
Burzykowski, 2013; Mehtätalo & Lappi, 2020). 

( ) 12var ij iv δε ⋅=                           (14) 

( ) 12var exp iv
ij

δε ⋅ ⋅=                         (15) 
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( ) ( )2
2

1var ij iv δε δ= +                       (16) 

where ( )var ijε  is the variance function evaluated in the variance covariate of 
the predictor residuals ( iv ), while 1δ  and 2δ  are the coefficients of the va-
riance function, which will be specific to each level ( iδ ). 

The best structure was selected through the evaluation of the statistical fit 
with R2, RMSE, and AIC values, as well as the significance of the parameters 
(p > 0.05) (Corral et al., 2019; Bronisz & Mehtätalo, 2020). Similarly, the like-
lihood ratio of each fit was verified through the ANOVA test included in the 
nlme function (Pinheiro & Bates, 2000). In the event of a tie or equality, prior-
ity will be given to the analysis that presents the smallest deviation (RMSE) 
and that provides a greater explanation of the sample variability (R2), since an 
integral evaluation between both mentioned criteria as a system of adjustment 
evaluation statistical is the best alternative (Mayer & Butler, 1993; Sakici et al., 
2008). The estimation bias (Bias) Equation (17) for the best structure was cal-
culated in order to verify the quantitative deviations resulting from the model 
application. 

1

ˆn i l
i

y yBias
n=

− =  
 

∑                        (17) 

In addition, a means comparison (as independent populations) was carried 
out with a t test at a = 0.05 (Infante & Zarate, 2012). For this purpose, 30 % of 
the randomly selected sample (which was not used for model calibration) was 
used (i.e., 378 and 525 pairs of H-d data for Pinus montezumae and Pinus pseu-
dostrobus, respectively). The null hypothesis (H0) tested was that there is no dif-
ference between heights of both independent populations ( )1 2µ µ= , while the 
alternative hypothesis (H1) was that the real value of the population mean (H) is 
different from the value established by H0 ( )1 2µ µ≠ . 

Further, a subsample ( im ) of the H-d data was used to calibrate the MEM and 
to estimate the value of random parameters of the vector ib , (Vonesh & Chin-
chilli, 1997; Corral-Rivas et al., 2014; Corral et al., 2019); data from Equation 9 
and Equation 12 independent sampling plots were used for Pinus montezumae 
and Pinus pseudostrobus, respectively. The equation used was the following: 

( ) 1ˆˆ ˆ ˆ ˆ ˆ ˆl l
T T

l l lb DZ DZR ε
−

=                         (18) 

where D̂  common variance-covariance matrix of the random parameters for 
which q q×  refers to the number of parameters with the mixed effect, iZ : 
m q×  matrix of the values of the partial derivatives, corresponding to the di-
mension of the trees selected for the calibration according to the chosen crite-
rion, and evaluated as ˆ 0lb = , ˆ

lR : variance-covariance matrix of the global error 
of the fitted model j jm m× ; l̂ε : error vector of the fixed model, which represents 
the residuals between the observed values minus the predicted ones 1m× , and 

TZ ; refers to the transpose matrix of each expression. 
Four calibration options (C) or localization of the MEM were analyzed to 
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obtain the best estimation strategy of the random parameters for each sam-
pling unit (plot), and to adjust the response of the model fixed component to 
each specific growth condition in the FPs (Sharma et al., 2016). The criteria to 
calibrate the specific response per sampling unit of the MEM and obtain a 
value with which the random parameter ( iϕ+ ) was fit in an additive way to 
estimate the height of the trees based on the normal diameter, were the fol-
lowing: 

C1: Measure the heights of the two thickest trees in normal diameter (d) 
within the plot. 

C2: Measure the heights of the two thinnest trees in d within each plot. 
C3: Measure the height of the thickest and thinnest trees in d per plot. 
C4: Measure the heights of the three thickest trees in d within each plot. 
Once the calibration was completed, tree heights on each plot was estimated 

by strategy (C1, C2, C3 and C4); the estimates were evaluated through the RMSE 
(Equation 12), Bias (Equation 17) and the mean absolute percentage error values 
(E%AM: Equation19) (Mayer & Butler, 1993). 

( )% 0 ˆ10 li iE AM y y ny− = ⋅  ∑                    (19) 

3. Results 

The two-parameter models (Equation 1 and Equation 2) had the lowest preci-
sion and provided the less accurate explanation. The Wang and Tang model 
(Equation 9) was chosen as the best owing to it goodness-of-fit and parsimony, 
being significant all of its parameters, which is not the case with Equations 3 and 
10. Therefore, this expression was used for the analysis with MEM (Table 3). 

The random effect at plot level ( iϕ ) was additively included within the genera-
lized H-d structure in the Wang and Tang model (Equation 9.1, 9.2, and 9.3); 
however, the fit resulted in non-significant parameters when including ( iϕ ) in 
the ( oa ) parameter or jointly with ( 1a ) and ( 2a ); therefore, those parameters are 
not shown. 

( )
2

1 e

01.3

a
dia

H a dH
ϕ

− 
 +  
 = +                     (9.1) 

( )2

1e

01.3

a i
da

H a dH

ϕ− + 
 
 
 
 = +                     (9.2) 

( )
( )2

1 e

01.3

a i
dia

H a dH

ϕ

ϕ
− + 

 + 
 
 = +                   (9.3) 

The inclusion of an additive random effect ( iϕ+ ) in the parameter 1a  for the 
MEM within the Wang and Tang model, and in the combination of 1a  and 2a  
provided good results. These results indicated that the inclusion with the best 
qualification is given in the combination of these parameters, and that a statis-
tical gain in the fit is obtained with respect to NLS in R2, RMSE, and AIC: 4.3%, 
10.9%, and 3.2%, for Pinus montezumae and 4.9%, 24.8%, and 6.5% for Pinus  
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Table 3. Goodness-of-fit statistics for the generalized height-diameter models. 

ID 
Pinus montezumae  Pinus pseudostrobus 

R2 RMSE AIC  R2 RMSE AIC 

1 0.3075 3.480 4711.9  0.5518 4.788 7684.9 

2 0.3473 3.378 4659.7  0.5788 4.713 7605.2 

3 0.7627 2.039 3770.1  0.8769 2.550 6035.1 

4 0.8004 1.870 3617.4  0.8684 2.636 6119.9 

5 0.8025 1.860 3608.2  0.8656 2.665 6147.4 

6 0.8034 1.855 3601.9  0.8719 2.601 6084.2 

7 0.8037 1.856 3604.7  0.8705 2.617 6102.1 

8 0.8041 1.854 3602.8  0.8706 2.616 6100.9 

9 0.8051 1.847 3594.2  0.8726 2.593 6076.3 

10 0.8054 1.848 3597.0  0.8748 2.572 6058.0 

ID = model identifier; R2 = Coefficient of determination; RMSE = Root-mean-square er-
ror; and AIC = Akaike Information Criterion. 

 
pseudostrobus, respectively. The inclusion of the varExp structure in the MEMs 
improved the results for both species since it regulated the unequal error va-
riance (Table 4). 

According to the ANOVA, the Wang and Tang expression that included ef-
fects on the parameters 1a  and 2a , and the varExp heteroscedasticity correc-
tion structure was the one that showed better results for Pinus montezumae 
(Table 5). The test indicated that reasonable fit is obtained for Pinus pseudo-
strobus when including the varPower and varConstPower variance structures 
(Table 5). However, for Pinus montezumae greater deviations of the response 
variable estimations, less explanatory power (Table 4), and non-significant pa-
rameters were obtained; hence, we decided to select the setting (Equation 9.2 + 
Equation 15: varExp) for both species, with the inclusion of random effects in 
the parameters 1a  and 2a . 

A bell-shaped curve (i.e. Gaussian) of the residuals was obtained for both spe-
cies (Figure 2(a) and Figure 2(b)) indicating compliance of this regression as-
sumption, which is a desirable pattern. The analysis of the homoscedasticity and 
comparison of the fittings made (NLS and MEM) showed a more compact dis-
tribution (close to zero) when using the MEM approach; this is due to the fact 
that the increasing trend of residuals as the predicted value increases is cor-
rected, and they are held constant when the structure that models the varExp 
type variance is included in the fit (Figure 2(c), Figure 2(d)). 

An individual deviation of −0.1110 m for Pinus montezumae and 0.1560 m 
for Pinus pseudostrobus was observed for the H estimates calculated with the 
fixed parameters model, obtained with the MEMs approach (Table 6). In addi-
tion, the evaluation by diameter class indicated deviations lower than the unity 
in all cases, as well as the largest bias in those categories with limited data 
(Figure 3). 
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Table 4. Statistical indicators of the goodness of fit for the generalized H-d models under 
the mixed effects model. 

ID 
Effects  

parameters 
Correction structure R2 RMSE AIC 

Pinus montezumae 

9 

1a  

without structure 0.8227 1.759 3578.2 

10 varPower 0.8260 1.743 3504.1 

11 varExp 0.8258 1.744 3516.9 

12 varConstPower 0.8260 1.743 3506.1 

9 

2a  

without structure 0.8281 1.733 3572.1 

10 varPower 0.8299 1.723 3487.0 

11 varExp 0.8299 1.724 3503.9 

12 varConstPower 0.8299 1.723 3489.0 

9 

1 2,a a  

without structure 0.8349 1.698 3574.5 

10 varPower - - - 

11 varExp 0.8412 1.665 3484.1 

12 varConstPower 0.8299 1.723 3489.0 

Pinus pseudostrobus 

9 

1a  

without structure 0.9105 2.172 5884.3 

10 varPower 0.9097 2.182 5653.1 

11 varExp 0.9101 2.177 5720.2 

12 varConstPower 0.9097 2.182 5655.1 

9 

2a  

without structure 0.9096 2.182 5901.1 

10 varPower 0.9065 2.220 5681.4 

11 varExp 0.9076 2.207 5743.1 

12 varConstPower 0.9065 2.220 5683.4 

9 

1 2,a a  

without structure 0.9104 2.050 5882.1 

10 varPower 0.9174 2.086 5640.0 

11 varExp 0.9181 2.078 5707.7 
12 varConstPower 0.9174 2.086 5642.0 

where, ID = model variant identifier; R2 = coefficient of determination; RMSE = root- 
mean-square error; and AIC = Akaike Information Criterion. 

 
Table 5. Comparison of height-normal diameter (H-d) generalized full models in its nested 
form under the mixed effects approach. 

No ID 
Effect  

parameter 
Correction  
structure 

BIC logLik Test L. ratio p-value 

Pinus montezumae 

1 

3.9.0 
1a  

Without structure 

3602.1 −1784.1 
   

2 2a  3596.0 −1781.1 
   

3 1 2 y a a  3608.0 −1780.3 2 vs 3 1.55 0.4596 

4 
3.9.1 

1a  
varPower 

3532.8 −1746.1 2 vs 4 69.96 <0.0001 

5 2a  3515.7 −1737.5 
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Continued 

6 

3.9.2 
1a  

varExp 

3545.6 −1752.5 
   

7 2a  3532.6 −1745.9 
   

8   1 2ya a  3522.4 −1734.0 5 vs 8 6.88 0.032 

9 

3.9.3 
1a  

varConstPower 

3539.6 −1746.1 8 vs 9 24.06 <0.0001 

10 2a  3522.5 −1737.5 8 vs 10 6.89 0.0087 

11 1 2 y a a  3525.7 −1735.8 
   

Pinus pseuodstrobus 

1 

3.9.0 
1a  

Without structure 

5910.1 −2937.1 
   

2 2a  5926.9 −2945.6 
   

3 1 2 y a a  5918.2 −2934.0 1 vs 3 6.206 0.0449 

4 

3.9.1 
1a  

varPower 

5684.0 −2820.6 3 vs 4 227 <0.0001 

5 2a  5712.4 −2834.7 
   

6 1 2 y a a  5681.2 −2812.0 4 vs 6 17.15 <0.0001 

7 

3.9.2 
1a  

varExp 

5751.1 −2854.1 6 vs 7 84.21 <0.0001 

8 2a  5774.0 −2865.5 6 vs 8 107.1 <0.0001 

9   1 2ya a  5748.9 −2845.8 
   

10 

3.9.3 
1a  

varConstPower 

5691.2 −2820.6 9 vs 10 50.58 <0.0001 

11 2a  5719.5 −2834.7 9 vs 11 22.26 <0.0001 

12 1 2 y a a  5688.4 −2812.0 9 vs 12 67.73 <0.0001 

where ID = model variant identifier; BIC = Bayesian Information Criterion; logLik: log 
likelihood. 

 

 
Figure 2. Frequency and distribution of residuals for the Wang 
and Tang generalized model according to its statistical fit—Non- 
linear Least Squares (NLS) and Mixed Effects Models (MEM)— 
for the two pine species analyzed. 
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Table 6. Fixed parameters with the mixed-effects-by-species model approach for the ge-
neralized Wang and Tang model. 

Species Parameters 
Lower 
value 

Value 
Upper 
value 

Standard 
Error 

t-value p-value 

Pinus  
montezumae 

0a  0.5023 0.6559 0.8094 0.078 8.369 <0.0001 

1a  1.1280 1.2115 1.2951 0.043 28.414 <0.0001 

2a  2.7927 3.5400 4.2873 0.381 9.282 <0.0001 

Pinus  
pseudostrobus 

0a  1.0223 1.2180 1.4137 0.100 12.194 <0.0001 

1a  0.9257 0.9719 1.0182 0.024 41.183 <0.0001 

2a  3.4552 4.1490 4.8428 0.354 11.720 <0.0001 

 

 
Figure 3. Bias by diameter category (Cd) when applying the generalized 
Wang and Tang model for the two Pinus species. 

 
Table 7 shows the variance-covariance matrix (vcov) values; the diagonal 

terms are the variances and the non-diagonal ones are covariances. Also, para-
meter values of the function included to model the residual distribution is pre-
sented (weights = varPower (value = 0.5)), the standard error given for each one 
by group (intervals (model, level = 0.95)), and residual values of the fit used to 
calibrate the random effects obtained with the nlme function used to fit the 
MEM. 

The t test between the validation subsample data (i.e. observed) and the esti-
mates indicated equality between populations for both species (Pinus montezu-
mae: t = −0.8354 and p = 0.4038; Pinus pseudostrobus: t = −0.0792 and p = 
0.9369). Therefore, Ha: ( )1 2µ µ=  is accepted. The graphical representation con-
firms these results (Figure 4). 

The evaluation of predictions with the calibration alternatives shows that the 
minor global deviations for Pinus montezumae are obtained by including the 
heights of two trees, one with the largest and another with the smallest d in the 
plot, whereas for Pinus pseudostrobus the heights of three trees with the largest 
d in the plot should be used to calibrate the value of the random parameter 
(Table 8). 
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Table 7. Values of the variance-covariance matrix, value of the homoscedasticity function 
incorporated, within -group standard error and residual value of random effects. 

Parameters 
Pinus montezumae Pinus pseudostrobus 

0a  1a  2a  0a  1a  2a  

0a  0.00612 −0.00305 0.02068 0.00995 −0.00220 0.02662 

1a  −0.00305 0.00181 −0.00600 −0.00220 0.00056 −0.00410 

2a  0.02068 −0.00600 0.14495 0.02662 −0.00410 0.12504 

Variance function 0.06510 0.08232 0.09953 0.04200 0.04886 0.05571 

Within-group  
standard error 

0.63651 0.75493 0.89537 0.86519 0.96558 1.07763 

Residual of random  
effects 

0.75493 0.29982 

 

 
Figure 4. Trend of height estimates as a function of diameter at breast height and mean 
dominant height when the Wang and Tang generalized model is used. 

 
Table 8. Goodness-of-fit statistics for the calibration alternatives of the Wang and Tang 
generalized model to estimate total height as a function of normal diameter. 

Calibration 
RMSE Bias E%AM RMSE Bias E%AM 

Pinus montezumae Pinus pseudostrobus 

C1 2.0931 0.4126 −5.1874 2.5179 −0.1964 −2.7876 

C2 2.0730 0.3390 −4.4834 2.5457 −0.0266 −3.3126 

C3 2.0441 0.0641 −1.9587 2.6539 0.1262 −5.5435 

C4 2.0714 0.2988 −4.2469 2.4907 −0.1092 −3.1220 

where, C1: Measure the heights of the two thickest trees in normal diameter (d) in the 
plot. C2: Measure the heights of the two thinnest trees in d in the plot. C3: Measure the 
height of the thickest and thinnest tree in d in the plot. C4: Measure the heights of the 
three thickest trees in d in the plot. RMSE: root mean square error. E%AM: mean abso-
lute percentage error. 

4. Discussion 

Bronisz & Mehtätalo (2020) and Liu et al. (2017) pointed out that two-parameter 
models have some accuracy disadvantages with regard to three-parameters 
models, hence, in order to estimate tree height based on the diameter at breast 
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height, choosing the latter is recommended. The Wang and Tang model pro-
posed here differs from structures selected by other authors. For example, Misir 
(2010) proposed the Schnute model which includes dominant diameter (Dd) as 
predictor for Populus tremula L., whereas Bronisz & Mehtätalo (2020) projected 
a Schumacher-type expression with Msd and Ba as predictors for Eucalyptus 
globulus L.; in our case, the equations in which Msd was included (Equations 1, 
6, 7, 8, and 10) showed non-significant parameters for both species. Conversely, 
our results concurred with the findings of Liu et al. (2017) for Metasequoia 
glyptostroboides Hu & Cheng; these authors concluded that including tree den-
sity as explanatory variables did not contribute significantly to models improve-
ment after fitting 16 generalized models. 

The inclusion of an additive effect ( ia+ ) in the Wang and Tang model fit with 
MEM is similar to the procedure followed by Sharma & Parton (2007), Var-
gas-Larreta et al. (2009), Corral et al. (2014), and Corral et al. (2019). These au-
thors also recorded a statistical gain in the model’s fit with respect to NLS in 
terms of the R2, RMSE and AIC values. Our results are also similar to those re-
ported by Crecente-Campo et al. (2010) who used the Bertalanffy-Richards 
model to estimate H as a function of d and dH, obtaining in average 6.4% and 
18.0% gains for the R2 and RMSE values, respectively. Therefore, the use of MEM 
with the inclusion of random effects makes it possible to model the random varia-
bility that results from different growth conditions of each site; in addition, more 
efficient and precise predictors are obtained, which is reflected in the good-
ness-of-fit statistics (Crecente-Campo et al., 2010; Ercanli, 2015). 

The R2 and RMSE values were higher than those reported by Santiago-García 
et al. (2020) who used a power function to weight the variance for Pinus patula 
Schiede ex Schltdl. et Cham. (R2 = 0.75, RMSE = 4.3), Pinus oaxacana Mirov (R2 
= 0.82, RMSE = 4.3), Pinus ayacahuite Ehren. (R2 = 0.83, RMSE = 3.5), Pinus 
teocote Schlecht. & Cham. (R2 = 0.80, RMSE = 3.6), and Pinus leiophylla Schiede 
& Deppe (R2 = 0.83, RMSE = 3.4). They used the Sharma and Parton expression 
for the first three species and the Wang and Tang and Nilson for the rest. These 
differences might be due to the homogeneity of the plantations with respect to 
natural forests conditions; unfortunately, to our best knowledge, no work has 
been developed on forest plantations in Mexico in this subject. 

In addition, our results also agree with Álvarez-González et al. (2007) find-
ings, who concluded that including a structure to model the variance within the 
statistical fitting helps to correct heteroscedasticity problems in residuals distri-
bution. Similarly, our findings are consistent with Ercanli (2015) and Corral et 
al. (2019) results, who reported that the inclusion of random effects in two pa-
rameters within the Schnute and Chapman-Richards generalized model improves 
the fit and precision indicators. 

Our results of the mixed effects models obtained for both species (Equation 
9.2 + Equation 15: varExp) showed an efficient correction of heteroscedasticity 
for the Wang and Tang generalized model, in comparison with both NLS and 
MEM fit without a variance structure (varExp), and this helped to reduce the 
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deviations in heights (H) estimation (better RMSE) and to maximize the expla-
nation of the sample variability (R2) (Bronisz & Mehtätalo, 2020; Santiago-García 
et al., 2020). Furthermore, a lower estimation error was achieved with the same 
field sampling effort by including the dominant height as inherent to the site 
(Corral et al., 2019). Likewise, the biases calculated for both species are similar to 
those reported in similar works; for example, Corral et al. (2014, 2019) reported 
bias values of −0.013 m and −0.009 m, in seven pine species in Durango, Mexico 
for a generalized model that considered d, dH, density, and Msd as predictors of 
H. 

The results also showed that by taking into consideration variables inherent to 
the population (mean square diameter: Dq, mH, A0, Ba, or age) to explain the 
growth trend of H in different stands is an alternative to improve the quality of 
the estimates, and increases the applicability of the expressions proposed on the 
H-d local equations (Misir, 2010; Liu et al., 2017). The only differences were 
found in the explanatory variable(s) of the forest stand or FP, given the particu-
lar ecological conditions and requirements of each species studied. 

Moreover, including dH as an explanatory variable helps to reduce bias in the 
estimates, and this is one of the variables with the greatest contribution to ex-
plain the sample variability and the dynamics of H in the stand or FP. The dH is 
directly related to site quality, it is sensitive to the environmental conditions in 
which the species grows, it remains constant after thinning (as long as it is not 
on the upper part), and it has shown better results than mH; besides, its registra-
tion does not entail a greater effort in the field (Crecente-Campo et al., 2010; 
Ferraz et al., 2018; Santiago-García et al., 2020). 

The model proposed can be a reliable quantitative tool for the development of 
forest management plans, owing to its statistical robustness and precision. The 
model is included in the growth and yield modeling, when it is combined with a 
site index equation or when it is used as a support in forest inventories (Ercanli, 
2015; Santiago-García et al., 2020). Furthermore, a dominant height by site index 
tag structure can be used within the structure proposed for the Wang and Tang 
model, which could help to expand its applicability and allow application of the 
results outside the research area or to other plantations of these two species, due 
to the direct relationship among site quality, tree age and dominant height within 
the site or plantation (Spurr & Barnes, 1982; Prodan et al., 1997; Torres & Ma-
gaña, 2001).  

The calibration of a MEM with a subsample of tree that does not generate ad-
ditional sampling costs, allows the estimation of height of all the trees within a 
sampling plot, based on the d of an independent subsample of trees, and gives 
insight into it application in different areas. In addition, this is an alternative 
approach that allows for saving time and costs in the planning and execution of 
forest management programs (Corral et al., 2019). Even though there are several 
calibration criteria for this type of fit (Calama & Montero, 2004; Crecente-Campo 
et al., 2010; Corral-Rivas et al., 2014), several authors agree that the use of few 
trees (<4 individuals) yields specific results for each site or plot condition, re-
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duces the deviations in the estimates and improves the predictive capacity of the 
equation proposed. 

5. Conclusion 

We obtained a significant statistical improvement with the use of mixed effects 
models (MEM) when fitting a generalized height-diameter (H-d) model, over 
nonlinear least squares (NLS). In addition, when a function to model the va-
riance structure is included in the MEM, the residuals decreased and this helped 
to correct undesirable residuals trend. 

The goodness of fit statistics, bias, means comparison test, and distribution of 
the estimates suggested that the Wang and Tang model that uses d and domi-
nant height can accurately estimate H for Pinus montezumae and Pinus pseudo-
strobus forest plantations in Michoacán, Mexico. 

The calibration or localization process of the MEM also allows the application 
of the expression proposed in plantations of these two species that were not in-
cluded in the analysis, reduces the estimation error and improves the estimates 
of the H-d relationship. Finally, this does not represent an additional sampling 
effort or time invested in the inventory. 
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