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Abstract 
The Federal Office for Economic Affairs and Export Control (BAFA) of Ger-
many promotes digital concepts for increasing energy efficiency as part of the 
“Pilotprogramm Einsparzähler”. Within this program, Limón GmbH is de-
veloping software solutions in cooperation with the University of Kassel to 
identify efficiency potentials in load profiles by means of automated anomaly 
detection. Therefore, in this study two strategies for anomaly detection in 
load profiles are evaluated. To estimate the monthly load profile, strategy 1 
uses the artificial neural network LSTM (Long Short-Term Memory), with a 
data period of one month (1 M) or three months (3 M), and strategy 2 uses 
the smoothing method PEWMA (Probalistic Exponential Weighted Moving 
Average). By comparing with original load profile data, residuals or summed 
residuals of the sequence lengths of two, four, six and eight hours are identi-
fied as an anomaly by exceeding a predefined threshold. The thresholds are 
defined by the Z-Score test, i.e., residuals greater than 2, 2.5 or 3 standard 
deviations are considered anomalous. Furthermore, the ESD (Extreme Stu-
dentized Deviate) test is used to set thresholds by means of three significance 
level values of 0.05, 0.10 and 0.15, with a maximum of k = 40 iterations. Five 
load profiles are examined, which were obtained by the cluster method 
k-Means as a representative sample from all available data sets of the Limón 
GmbH. The evaluation shows that for strategy 1 a maximum F1-value of 0.4 
(1 M) and for all examined companies an average F1-value of maximum 0.24 
and standard deviation of 0.09 (1 M) could be achieved for the investigation 
on single residuals. In variant 3 M the highest F1-value could be achieved with 
an average F1-value of 0.21 and standard deviation of 0.06 (3 M) for summed 
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residuals of the partial sequence length of four hours. The PEWMA-based 
strategy 2 did not show a higher anomaly detection efficacy compared to 
strategy 1 in any of the investigated companies.  
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1. Introduction 

Establishing an environmentally compatible and sustainable energy supply is 
one of the central challenges of our time. For the implementation of the energy 
transition by 2030 [1] or 2050 [2], there are two main climate policy goals at the 
European level: increasing the share of renewable energy and increasing energy 
efficiency [3]. To realize these goals, comprehensive changes are needed in vari-
ous sectors, such as energy supply, transport, and industry. Driven by political 
requirements and financial support programs, the efficient use of energy and 
resources is becoming more important for companies. 

Limón GmbH is therefore developing algorithms for the automated analysis 
of energy data and load profile data in cooperation with the University of Kassel 
as part of the BAFA [4] savings meter funding program “Pilotprogramm Eins-
parzähler”. An essential task is automated anomaly detection for the identifica-
tion of saving potentials. 

Anomaly detection has a wide range of applications, such as economics, net-
work traffic, industrial process control, and statistics. Therefore, a number of 
books and survey papers exist that deal with anomaly detection [5] [6] [7] [8] 
[9]. 

Anomalies can be defined as follows: “Anomalies are patterns in data that do 
not conform to a well-defined notion of normal behavior” [5]. In the context of 
this work, normal behavior is modeled using methods from the fields of machine 
learning and statistics. The comparison of these methods for the estimation of 
time series and the resulting question of which method yields better forecasting 
accuracy has not yet been clarified and is the subject of current research [10]. 
The paper addresses this research question by comparing and adapting two 
anomaly detection strategies. The main difference between the two strategies is 
the way a typical monthly load profile is estimated and compared to the real load 
profile. Strategy 1 estimates the load profiles using the LSTM (Long Short-Term 
Memory) algorithm from the field of machine learning [11]. It has already been 
successfully applied in the estimation of time series [12] [13]. Strategy 2, on the 
other hand, uses the PEWMA (Probalistic Exponential Weighted Moving Aver-
age) estimation method from statistical time series analysis [14]. In comparison 
to the LSTM algorithm, it has much lower algorithm complexity as well as 
computational requirements. This method is evaluated based on these properties 
and promising results in the context of anomaly detection in time series [15] 
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[16]. The two methods will be applied to selected load profile data of companies 
from Germany provided by Limón GmbH. The work is further characterized by 
the fact that for the investigated companies only information from time stamps 
and the associated power values are known. In both strategies, the residuals ob-
tained are examined for anomalies and compared to pre-defined reference ano-
malies. This makes it possible to quantify the anomaly detection efficacy. 

2. Theoretical Background 
2.1. Point Anomalies & Partial Sequence Anomalies 

Unusual data points or sequences in load profiles can be categorized according 
to different types. Point anomalies and partial sequence anomalies are relevant 
to this study, but additional types or further possibilities of systematizing ano-
malies exist [7] [9]. A point anomaly is a single time point that behaves un-
usually compared to other values in the time series. Point anomalies can be 
univariate or multivariate, depending on whether they affect one or more 
time-dependent variables. Partial sequence anomalies refer to the behavior of a 
sequence of consecutive time points that are considered unusual. Individual 
data points in this sequence do not necessarily represent a point anomaly. Ano-
maly subsequences can also occur in a time-dependent manner in one dimen-
sion (univariate subsequence) or in multiple dimensions (multivariate subse-
quence). Across the board, the classification of data as an anomaly is always 
context-dependent, i.e., either the entire time series is seen as the context or the 
method only examines certain time windows, so that outliers are only valid lo-
cally or in close proximity [7]. However, anomalies can also occur in other con-
texts, such as when considering the temporal influences of seasons or week-
day-weekend rhythms [5]. 

2.2. Residual-Based Anomaly Detection 

In this work, a residual-based anomaly detection method is used for anomaly 
detection. In a first step, the normal behavior of a load profile is estimated using 
a mathematical model. In a second step, deviations (residuals) between esti-
mated and observed values are formed and a decision is made whether an ob-
servation is anomalous by means of residual analysis. 

2.2.1. Modeling Normal Behavior 
Different regression models can be created from the known load profile data. 
Through these models, expected values can be formed and these represent a kind 
of normal behavior of a load profile, which is anomaly-free in the best case. In 
order to determine an expected value, a distinction is made between estimation 
and prediction models. The conceptual distinction between estimation and pre-
diction is based on Blázquez-García et al. (2018) [7]. Estimation models use past 
data, the current time, and data temporally subsequent to the expected value to 
estimate an expected value. In contrast, prediction models use only past data to 
determine a temporally subsequent expected value.  
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The estimation model by LSTM algorithm uses two variants. The first variant 
uses a period of one month, abbreviated as 1 M in the following, to build the 
model. This corresponds to the period in which anomalies are to be identified. 
In the second variant, the model is created with data from three months (3 M), 
i.e., two previous months and the month to be examined for anomalies are used. 
The additional analysis using a 3 M estimation model avoids the danger com-
pared to the 1 M estimation model of estimating possible anomalies in the esti-
mation model and thus hiding them. 

The estimate based on the PEWMA method uses three smoothing parameters 
αp = (0.3, 0.6 and 0.9) and are tested with regard to the possibility of successfully 
identifying anomalies. The larger αp, the more the resulting curve is smoothed. 
Following Renshaw [17], the PEWMA procedure is used in this work with β = 
0.5. 

2.2.2. Residual Analysis 
The estimated load profiles are compared with the observed load profiles of a 
month and the deviations are analyzed (residuals analysis). This analysis is car-
ried out either on the level of individual residuals or based on the summation of 
successive residuals as partial sequence anomalies. The partial sequences of 
length two, four, six, eight hours are examined, each being sliding sequence 
windows. Residuals and residual sequences whose expression exceeded a defined 
threshold were scored as anomalies. Thresholds are systematically varied by us-
ing a generalized Extreme Studentized Deviate (ESD) [18] test and a Z-Score test 
procedure. In the ESD test, the three significance level values α = (0.05, 0.10, and 
0.15) with a maximum of k = 40 iterations, are used as thresholds to identify 
anomalies. The Z-Score test uses z-standardized residuals. For identification as 
an anomaly, the 2, 2.5, and 3 multiples of the standard deviation of the data 
points are investigated as bounds. The identified anomalies can be evaluated us-
ing three metrics Precision (P), Recall (R) and F1 measure [6]. 

The Precision is defined as the number of true positives (tp) divided by the 
sum of tp and the number of false positives (fp): 

tpP
tp fp

=
+

                          (1) 

The Recall R describes the ratio of tp to the sum of tp and false negatives (fn): 

tpR
tp fn

=
+

                          (2) 

The F1 measure considers both P and R and forms the harmonic mean of both 
previous metrics: 

1 2 P RF
P R
⋅

= ⋅
+

                         (3) 

All metrics output numerical values between 0 and 1. In order to apply them, 
it is necessary to know the number of data points that have been classified as 
anomalous or normal by the anomaly detection method. Furthermore, the pop-
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ulation of anomalies present in the data set must be known. 

3. Description of the Load Profiles for Anomaly Detection 

Limón GmbH has been able to evaluate data in the form of load profiles from 
several hundred companies over the last 10 years. This total material was 
grouped by using the k-Means clustering method to five prototypical load pro-
files. In order to predefine anomalies, the companies to be investigated were 
examined for anomalous profiles in expert interviews prior to the evaluation. 
The anomalies defined by the experts are used as references to determine the ef-
ficacy of the anomaly detection strategies. 

3.1. Selected Load Profiles 

Figure 1 represents three of the five load profiles used in the further work for 
the comparison and adaptation of the two strategies. In each case the total sum 
of predefined point and partial sequence anomalies is given.  

The predefined anomalies of companies 1 to 4 can be described as temporally 
contextual anomalies, since the load profiles follow a temporal rhythm, i.e., 
day-night and weekday-weekend dependencies exist, and unusual profiles exist 
in the context of the respective point in time. Company 5 (see Figure 3) is not 
subject to any of these dependencies. The anomalies predefined here can only be 
seen in the context of the overall progression, so unusual maximum or mini-
mum power values are defined as reference anomalies. 

3.2. Counting Method of the Anomalies 

It is found that the majority of the companies have more predefined anomalous  
 

 
Figure 1. Display of the selected load profiles with predefined anomalies. 
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sequences than point anomalies. Point anomalies are identified by evaluating the 
residual values of individual time points. However, it is possible that single resi-
dual studies also identify anomalous subsequences. This is because the estima-
tion in the range of anomalous sequences also differs from the given load profile 
data in part by only single high residual values. Therefore, the investigation of 
partial sequence anomalies using summed residual values can also identify single 
point anomalies. To address this difficulty, the following counting method for 
anomalies is established: 1) Anomalous sequence regions are counted as detected 
only once if identified more than once. 2) If point anomalies and anomalous se-
quences occur together in a load profile, then each anomalous sequence counts 
as one anomaly each. 

4. Evaluation of the Two Strategy Approaches 

Estimation using the two different strategies is followed by examination of the 
single and summed residuals to identify anomalies using threshold testing by 
Z-Score and ESD. In the following, two exemplary individual results and subse-
quent overarching results are discussed. 

4.1. Exemplary Single Results 
4.1.1. Single Residual Analysis-Strategy 1 (1 M)-Company 1 
For the analysis of conspicuous single residuals for company 1, the LSTM model 
(1 M) is estimated and deviations between observed and estimated values are 
evaluated using the Z-Score and ESD test (see Figure 2). In general, many false 
positive assignments and a maximum of two out of three anomalies can be de-
tected, i.e., a maximum Recall of R = 0.67. The evaluation results not explicitly 
shown here reveal the reason for high number of fp results. At company 1, the 
estimation models 1 M & 3 M, are not able to model every peak in the load pro-
file, so that high residual values also occur outside the predefined anomalous 
ranges. The analysis (see Table 1) with the ESD test at α = 0.05 shows the high-
est Precision with P = 0.17, a Recall of R = 0.33, and the highest F1 measure with  
 

 

Figure 2. Plot of the identified anomalies of company 1 resulting from the three Z-Score 
values and the three significance level values of the ESD test (k = 40). 
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Table 1. Calculated precisions, recalls, and F1 measures of company 1 (1 M) for three 
Z-Score thresholds and the three significance level values of the ESD test (k = 40). 

Company 1 (1 M) Precision Recall F1 measure tp fp fn 

ESD α = 0.05 0.17 0.33 0.22 1 5 2 

ESD α = 0.10 0.14 0.33 0.20 1 6 2 

ESD α = 0.15 0.14 0.33 0.20 1 6 2 

Z-Score > 3 0.08 0.33 0.13 1 11 2 

Z-Score > 2.5 0.10 0.67 0.17 2 19 1 

Z-Score > 2 0.06 0.67 0.10 2 34 1 

 
F1 = 0.22. For less stringent significance levels (α = 0.10 and 0.15), the values de-
teriorate. For the analysis by Z-Score thresholds, although two of the three ref-
erence anomalies can be identified as true positives under the two thresholds of 
Z = 2.0 and Z = 2.5, at the same time the number of false positive assignments 
increases considerably to 19 and 34, respectively. 

4.1.2. Single Residual Analysis-Strategy 2-Company 5 
The analysis of the data in Strategy 2 showed that the application of the 
PEWMA-based approach only seems to make more sense for company 5. The 
PEWMA method cannot utilize temporal contextual rhythms, such as week-
day-weekend dependencies, and these are significantly responsible for the load 
profiles in companies 1 through 4.  

For company 5, the highest anomaly detection quality results in the case of αP 
= 0.9, i.e., with a very strongly smoothed curve. For two of the three reference 
anomalies with unusual maximum values, very large residuals arise. Their cor-
rect positive identification is thus facilitated (see Figure 3). Table 2 provides a 
breakdown of the three metrics for Z-Score testing. The F1 measures increase 
with increasing smoothing and tend to decrease with lower thresholds when the 
influence of the R values is considered. In general, the evaluation shows that 
more false positive assignments result with smaller threshold. The ESD was able 
to achieve a maximum Recall of R = 0.33, so an explicit presentation is omitted. 

4.2. Strategy and Cross-Company Results 

Residuals and residual sequences whose expression exceeds a defined threshold 
are evaluated as anomalies. The thresholds are systematically varied in an ESD 
test procedure or as a Z-Score test with three test thresholds each. An overarch-
ing evaluation of the threshold procedures allows the suitability for the resi-
dual-based anomaly detection approach to be assessed. Figure 4 shows the av-
erage Recall of the Z-Score and ESD test per threshold of strategy 1 of variant 1 
M and 3 M. The average Recall value of each ESD test is below the Z threshold of 
Z > 3. However, the significance levels chosen for the ESD test are set higher 
than average, since α = 0.5 or smaller are usually used [18]. Preliminary analysis 
of the present data showed that no anomalies could be detected below an α-value  
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Figure 3. Plot of identified anomalies of company 5 for PEWMA αP = 0.9 resulting from 
Z-Score test and ESD test (k = 40). 
 

 

Figure 4. Plot of the average recall of companies 1 to 5 per threshold for the Z-Score and 
ESD test of strategy 1 (1 M & 3 M). 
 
Table 2. Calculated precisions, recalls, and F1 measures of company 5 for three Z-Score. 

 αP = 0.3 αP = 0.6 αP = 0.9 

Company 5 P R F1 P R F1 P R F1 

Z-Score > 3 0.09 0.33 0.14 0.09 0.33 0.14 0.18 0.67 0.29 

Z-Score > 2.5 0.05 0.33 0.09 0.11 0.67 0.19 0.12 0.67 0.20 

Z-Score > 2 0.03 0.33 0.05 0.06 0.67 0.10 0.08 1.00 0.14 

 
smaller than 0.05. Furthermore, the ESD test identifies anomalies depending on 
the amount of incoming data points. The high number of incoming data of n = 
720, which corresponds to a period of about one month, seems to lead to the 
ESD test being too insensitive, since the λi value remains very stable with conti-
nuous iteration compared to Ri values of the test statistic [18]. Further, the eval-
uation showed that with increasing sequence length of the summed residuals as 
well as with increasing PEWMA alpha values, the frequency distribution of the 
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obtained residuals moves further and further away from a normal distribution. 
However, the normal distribution assumption is among the prerequisites of an 
ESD test. Accordingly, the Z-Score test, in contrast to the ESD test, can be con-
sidered more suitable to analyze the given data and is used for further discussion 
of the evaluation results.  

By taking a cross-strategy view, the question of whether the efficacy of ano-
maly detection depends on the specific load profile of a company can be ans-
wered. Companies 1 to 4 have relatively similar load profile characteristics. 
Comprehensible temporal rhythms exist. Among other things, the experts iden-
tified deviations as reference anomalies that did not follow these rhythms. The 
LSTM network underlying strategy 1 can, in principle, recognize many of these 
input variables or temporal rhythms thanks to the information from the time 
stamp and take them into account in the regression model. Consequently, it 
could be assumed that the LSTM algorithm should be able to estimate the cyclic 
changes of the power values. In the evaluation, however, it is difficult to estimate 
individual load peaks in the maximum power range of the day or the slopes of 
suddenly rising or falling power values at the beginning or end of a core working 
time. In these areas, high residuals arise when comparing the expected values es-
timated by the LSTM network with the observed data. These are detected as 
anomalies in the residual analysis, but do not correspond to the reference ano-
malies resulting in low F1 measures. However, the strategy based on the LSTM 
network can detect anomalies much more efficiently than strategy 2 for the first 
four companies. In contrast, the load profile of company 5 does not show tem-
poral dependencies. Using both strategy 1 and strategy 2, similar anomaly detec-
tion qualities have resulted for this company. For the LSTM network, estimation 
based on the information from the timestamp is challenging, since these hardly 
influence the load profile. Other influencing factors not known for this work 
seem to play a role and cannot be used as input variables for the LSTM network. 
For the PEWMA based strategy 2 it can be observed that the efficacy of the 
anomaly detection is influenced by the context in which the anomalies are lo-
cated. The higher the proportion of unusual power peaks or drops in the context 
of the overall course, the higher the anomaly detection efficacy. 

Furthermore, by comparing the cross-company results of strategy 1, it is possi-
ble to evaluate the effect of the length of the time period of the data used to esti-
mate an LSTM model (1 M vs. 3 M) on the efficacy of anomaly detection. Figure 5 
shows the F1 measures of the Z-Score tests of company 1 to 5 for the 1 M & 3 M 
variants. Additionally, the ratio of higher F1 measures in the 1 M estimation com-
pared to those from the 3 M estimation at the same threshold in each case is illu-
strated. In most cases, better F1 measures result for the 3 M estimate.  

A closer look at the data pool of the company from company 4 reveals that 
two of the previous months used for the 3 M estimate have very different load 
profiles. Consequently, the resulting estimate does not provide a good basis for 
identifying the reference anomalies. However, it also shows comparatively low F1 
values overall, since there is a high number of false positive assignments  
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Figure 5. Plot of F1 measures of Z-Score tests for company 1 to 5 in 1 M & 3 M variants 
and indication of the ratio of A:B with A: number of higher F1 measures compared to 3 M 
and B: number of higher F1 measures compared to 1 M. 
 
depending on the threshold. Presumably, the use of significantly longer periods for 
training the LSTM network could serve to improve the anomaly detection efficacy. 

By summarizing the results of single residual or residual sequence analysis and 
comparing them across strategies, the effects on the efficacy of anomaly detection 
can be evaluated. Figure 6 presents the average F1 measures (1 M: bluish shades, 3 
M: reddish shades) and standard deviations for all companies for summed resi-
duals (moving sequences) and single residuals in a comparative overview. For the 
two estimation variants 1 M and 3 M, different trends emerge. In variant 1 M, the 
average F1 values of the individual residuals decrease as the threshold value be-
comes smaller. For summed residuals, there is also a slight tendency for the F1 
values to decrease with decreasing threshold values. Furthermore, under the 1 M 
estimation in all condition variations, higher F1 values are found for single resi-
duals than for summed residuals. 

A more differentiated picture emerges for variant 3 M when the F1 values are 
considered. The combination of threshold values of Z > 2.5 or Z > 3 and residual 
sequences of four and six summed hours (sum 4 & sum 6) shows the highest F1 
values in the overall comparison. Consequently, summation can lead to improved 
anomaly detection quality under certain conditions. In the analysis of the data, not 
explicitly presented here, using strategy 2, an F1 measure of 0.40 was shown for 
company 5 with the residual summation of six hours as well as Z values greater 
than 3. Comparing these values with the strategy 1 analysis of the data of the 
company from company 5, identically high F1 values are shown.  

Considering all the data analyzed and using the Z-Score thresholds, it can be 
concluded that the use of strategy 1 based on the LSTM network is preferable to 
the use of strategy 2.  

The F1 values obtained from the two strategies are rather low compared to ex-
amples from the literature. For example, Hundman et al. (2020) use an LSTM 
network to identify anomalies in multivariate time series of telemetry data from a 
spacecraft, where different types of thresholding procedures are tested [13]. The 
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Figure 6. Plot of average F1 measures and standard deviations (1 M: bluish shades, 3 M: reddish shades) for the companies 1 to 5 
for summed subsequences and single residuals in comparison. 

 
authors report Precision values of up to P = 0.92 in combination with a Recall of 
R = 0.63. Therefore, this publication suggests that other thresholding techniques 
should be tested for their usefulness, such as adaptive thresholding techniques. 
The publication leaves open which characteristics the curve progression of the 
described telemetry data has. Accordingly, the results cannot be compared with 
those of this work without exception. The PEWMA method has been success-
fully applied, for example, to streaming data from Twitter with resulting F1 val-
ues of up to 0.80 [15] or to temperature time series with F1 values of up to 0.84 
[16]. However, the time series data analyzed in these cases have significantly dif-
ferent characteristics than the power time series analyzed here. Temperature 
time series, for example, are much lazier compared to power load profiles. 
Therefore, the elaborated strategy 2 could be applied in other areas to achieve 
satisfactory results. 

5. Conclusions 

This paper presents the comparison and adaption of two strategies for anomaly 
detection based on the LSTM network and the PEWMA method. The results 
show that anomaly can be partial to fully recognized by the chosen approaches 
previously defined, but with the maximum averaged F1 value of 0.24. In many 
cases, the presence of a large number of false positive assignments leads to a de-
crease of F1 values. In further efforts, approaches should be found to minimize 
the false positive results and thus improve the associated efficacy of the anomaly 
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detection. 
The chosen technique of being able to identify anomalies using information 

from timestamps and associated performance values alone is probably one rea-
son why the F1 values are relatively low. The incorporation of additional factors 
affecting power values in the sense of a multivariate estimation model can possi-
bly achieve higher anomaly detection efficacy. Furthermore, alternative methods 
for thresholding, such as adaptive methods, should be tested to determine their 
suitability. It must be considered that the anomalies identified by the expert in-
terviews are not necessarily exhaustive. Thus, the false positive assignments may 
well have identified anomalies that were not noticed in the expert interviews. 
This will be considered further in future studies. 

Overall, however, it can already be stated that the use of automated anomaly 
detection procedures can significantly reduce the search area for several hundred 
load profiles in a company and thus reduce the effort of manual analysis. 
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