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Abstract 

You are what you eat (diet) and where you eat (trophic level) in the food web. 
The relative abundance of pairs of stable isotopes of the organic elements 
carbon (e.g., the isotope ratio of 13C vs 12C), nitrogen, and sulfur, among oth-
ers, in the tissues of a consumer reflects a weighted-average of the isotope ra-
tios in the sources it consumes, after some corrections for the processes of 
digestion and assimilation. We extended a Bayesian mixing model to infer 
trophic positions of consumer organisms in a food web in addition to the de-
gree to which distinct resource pools (diet sources) support consumers. The 
novel features in this work include: 1) trophic level estimation (vertical posi-
tion in foodweb) and 2) the Bayesian exposition of a biologically realistic 
model [1] including stable isotope ratios and concentrations of carbon, ni-
trogen, and sulfur, isotopic fractionations, elemental assimilation efficiencies, 
as well as extensive use of prior information. We discuss issues of parameter 
identifiability in the complex and most realistic model. We apply our model 
to simulated data and to bottlenose dolphins (Tursiops truncatus) feeding on 
several numerically abundant fish species, which in turn feed on other fish 
and primary producing plants and algae present in St. George Sound, FL, 
USA. Finally, we discuss extensions from other work that apply to this model 
and three important general ecological applications. Online supplementary 
materials include data, OpenBUGS scripts, and simulation details. 
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1. Introduction 
1.1. Scientific Background 

Stable isotope sourcing models are widely used to understand, among other 
things, animal diets and food webs [1] [2] [3] [4]. Because chemical elements 
have multiple isotopic forms (same number of protons, different numbers of 
neutrons, Figure 1(a)), and their relative abundance is a function of chemical 
and biological processes, the natural abundance of stable isotopes ratios varies 
geographically and among species (Figure 1(b)) (data from [5]). Unlike radioac-
tive elemental isotopes, stable isotopes do not naturally decay, so the persistence 
of stable isotopes of hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and 
sulfur (S) has found widespread use as biological tracers in studies of animal di-
ets. The isotope ratio, ( )sample standard1000 1 ‰R Rδ = − , is a normalized ratio of 
an estimate of the number of rarer to common isotope atoms in a sample (Rsample, 
such as 13C/12C) relative to an international standard (Rstandard) given in parts per 
thousand (‰) [6]. A mass spectrometer is typically used to measure isotope ra-
tios from tissue or blood samples after combustion, vaporization, and ionization 
(Figure 1(c)). The concentration of an element is the proportion of that element 
in a sample, which can be measured jointly with the isotope ratio given that the 
mass of the sample is measured prior to analysis. The relative concentration of 
carbon to nitrogen among plant leaves in terrestrial environments can vary by 
two orders of magnitude and animal tissues have much greater concentrations of 
N than plant material [7]. 

The assimilation efficiency is the proportion of each element consumed that 
is incorporated into consumer’s tissues (Figure 1(d)). For example, a fish (or a 
population of fish) ingests plant matter (ingestion) and a proportion of this ma-
terial is processed by the digestive system and used to make new cells or tissues 
(assimilation) and the remaining undigested material exits the fish’s body (ex-
cretion). The efficiency varies greatly, from 15% to 50% for plant material, and 
60% to 100% for animal material. Furthermore, the process of assimilation pre-
ferentially incorporates heavier isotopes into the animal’s tissues (trophic frac-
tionation) (Figure 1(e)). 

A food chain represents a succession of organisms that eat another organism 
and may be, in turn, eaten themselves [8]. A food web consists of all the food 
chains in a single ecosystem (Figure 1(f)) [9]. The number of steps an organism 
is from the start of the chain is a measure of its trophic level [10] and can be in-
ferred from the diet and trophic fractionation. 

Stable isotope analysis of a consumer animal’s tissues (the mixture) and their 
potential prey and diet (the sources) is a leading strategy to gain insight about 
the trophic structure of food webs, because stable isotopes contain both time- 
and space-dependent information among organisms. The model presented here 
acknowledges that “you are what you assimilate”. In particular, the isotope ratios 
of the elements of carbon, nitrogen, and sulfur, in the tissues (e.g., blood, mus-
cle, bone, or hair) of a consumer reflect the isotope ratios in the sources it  
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Figure 1. Stable isotope sourcing and trophic level background. (a) The carbon atom is defined by having six protons. The com-
mon isotope with six neutrons is called “carbon-12” (12C) with a natural abundance of 98.93% and the rare isotope has seven neu-
trons (13C) with a natural abundance of 1.07%. (b) Different photosynthetic pathways lead to distinct isotope ratios. This partial 
reproduction of Figure 9-3 from Deines (1980) illustrates B. known C3 and C4 terrestrial plants (C3 photosynthesis captures less 
13C than C4 photosythesis), D. algae, F. marine plants exclusive of plankton, and H. marine plankton. (c) Using a magnetic force 
on moving charged particles, a mass spectometer separates molecules by mass measuring the relative concentrations of isotopes in 
a sample. (d) Within a species, we are interested in the process of ingesting sources, assimilating a proportion of each source into 
the consumer’s tissues while excreting the remaining proportion of the source, and ultimately possibly being consumed by a high-
er species. (e) Trophic fractionation is the result of digestion and assimilation where lighter isotopes are preferentially excreted 
with the result that the consumer’s tissues are isotopically heavier than the sources consumed. (f) The food web is a directed graph 
defining the flow of nutrients from sources to consumers. Trophic level increases by one unit for each step up a food chain. 

 
consumes weighted by the proportion of each in the diet, after corrections for 
the processes of digestion and assimilation. While the use of stomach and fecal 
contents still provides critical insight into feeding relationships, there are some 
very well-understood limitations for evaluating dietary breadth [11] making sta-
ble isotope analysis preferred in many contexts [11] [12] [13]. The model devel-
oped here provides direct answers to the two core ecological questions necessary 
for food web reconstruction: 1) What is the trophic position of a consumer spe-
cies in a food web? 2) What are the proportional contributions of sources to 
consumer diets? 

1.2. Literature Background 

Analysis of food web structure has increasingly relied upon stable isotope data 
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and models because temporal and spatial trophic relationships can be inferred 
among species. While many of the early (1970s) innovating stable isotope appli-
cations were qualitative, more recent (2000s) quantitative methods have become 
numerous and specific and have greatly increased our understanding of food 
webs. Three recent reviews discuss the primary analytical tools for, Bayesian 
models for, and best practices for applying stable isotope models for under-
standing food web structure. 

A variety of analytical methods for estimating species trophic level, estimating 
species diet, refining foodweb structure, and understanding intrapopulation 
trophic variability have been proposed [14]. When estimating trophic level, me-
taanalysis is dependable when averaging over many food chains [15], but litera-
ture values are currently unreliable for estimating trophic level for individuals or 
single species [16]. 

Inference on diet has focused on using a mass-balance mixing model as the 
primary defining relationship between the consumer and sources isotope ratios 
(basic mixing model, BMM) [2]. Extensions soon followed to incorporate ele-
mental concentrations (concentration mixing model, CMM) [17] and assimila-
tion efficiencies (extended mixing model, EMM)) [1]. The mixing model defines 
the mean isotope ratio of the consumer as a convex combination of the mean 
isotope ratios of the sources, where the weights in the convex combination are 
the proportional contributions of the sources to the consumer’s diet. For discus-
sion, in the context of a single consumer, let I be the number of isotopes meas-
ured and S be the number of sources considered. The diet probability vector 
starts with S − 1 degrees-of-freedom (given the simplex constrain that the sum 
of proportions equals 1), and each isotope provides an equation in a linear sys-
tem reducing the degrees-of-freedom by one. Thus, given I and S, three situa-
tions for the diet probability vector are possible: 1) when 1S I= +  the diet is 
perfectly constrained with a unique solution; 2) when 1S I< +  the diet is 
overconstrained and there are generally no solutions (provided no equations are 
collinear); and 3) when 1S I> +  the diet is underconstrained and there are in-
finitely many solutions. Different methods apply to one or more of these situa-
tions. 

Frequentist methods apply to cases (1) and (2). In the perfectly constrained 
case (1), [17] applied the delta method to situations with S = 2 or 3 for the BMM 
and [18] extended this for arbitrary S for the EMM using the implicit function 
theorem. In the overconstrained case (2), [19] provide a detailed frequentist ap-
proach deriving the asymptotic distributions using weighted least squares (WLS) 
of both non-temporal and temporal models, show that including “uninformative” 
isotopes in the model does not reduce the efficiency in the WLS estimator (thus 
isotopes that do not distinguish sources well may still improve estimate preci-
sion), and include a lack-of-fit strategy. 

Solution-polytope methods apply to case (3). In the underconstrained case (3), 
which is the most common case of having many sources but few measured iso-
topes, the first strategy by [20] ignored variation and returned approximate de-
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terministic solutions for the mixing model by testing every possible combination 
of source proportions in small increments implemented in software. This strat-
egy was improved upon by [21] in software (available since 2007), which returns 
exact probabilistic solutions by quickly sampling uniformly over the solution 
polytope; this method is an approximate Bayesian large sample procedure. 

Bayesian methods apply to all three cases (1), (2), and (3). [3] discusses a Baye-
sian stable isotope mixing model (SIMM) with shared random effects and the 
previous decade of development by their coauthors in this area. [22] formulates 
a Bayesian model similar to [3] but without shared random effects, and discuss 
how the shared random effects may be problematic. [23] provides a Bayesian R 
package for trophic estimation for a version of the BMM. 

There are suggestions regarding best practices for using SIMMs, including 
using prior knowledge for foodweb structure and model parameters, including 
isotope ratios, fractionation, concentrations, assimilation efficiency, diet propor-
tions, and trophic level, data collection strategies, plotting data, grouping sources 
when reasonable, reporting uncertainty in estimates, and being explicit about 
limitations of the analysis [24]. 

The innovations in our model include the: 1) simultaneously inference of diet 
and trophic level in a 2) multi-level foodweb using a 3) Bayesian EMM. This is a 
Bayesian formalization and extension of the idea by [25] who used a heuristical 
two-step approach first to estimate diet using δ13C and δ34S, then to estimate 
trophic level using δ15N within a single-level foodweb. In our model, trophic lev-
el is estimated by averaging over all the food chains represented in the hypothe-
sized foodweb. We extend the model by [22] for simultaneous trophic-level 
modeling with a detailed explanation of the incorporation of prior information. 
Additional features include: 1) prediction (imputation) of missing values at each 
step in the MCMC so incomplete information can be used; 2) treatment of the 
mean assimilation efficiency as random and potentially correlated between iso-
topes; 3) inclusion of correlation between any data measured together and 
transformation to a sensible scale, such as isotope and (logit) concentration val-
ues; 4) ease to include discrimination estimated from diet experiments, regres-
sion, or other methods, with the appropriate uncertainty; and 5) consolidation of 
source estimates into a “combined” source, if desired. We apply the model to a 
previously published bottlenose dolphin and fish foodweb [25] [26] [27] [28]. 

2. Extended Bayesian Stable Isotope Mixing Model 

Our model is composed of four hierarchical submodels to estimate parameters 
for source isotope ratio and concentration (LS), fractionation (LF), assimilation 
efficiency (LS), and consumer isotope ratio (LC), parameters of which are con-
nected through a defining relationship with trophic level and diet. The full post-
erior distribution is the product of the submodels,  
( ) S F E Cparameters | datag L L L L∝ . Each submodel has a sampling model for the 

data given parameters and a prior distribution for the parameters. While there 
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are many parameters, the relationships of individual components are simple. 
Our basic sampling models assume random samples   from multivariate 

( ),N µ Σ  distributions, but alternate distributions may be substituted. We use 
( )f ⋅  and ( )g ⋅  to identify a generic function and a probability distribution, 

respectively. 
In the following sections we specify the defining relationship (the functional 

relationship of model parameters), the four hierarchical submodels, considera-
tions for Bayesian inference, and results of simulation studies. Simulation Scena-
rio 1 presented in Figure 2 is used for model exposition illustration and model 
validation, defining a simple foodweb containing all the modeling complexities 
in the dolphin example; Appendix B includes two additional simulation scena-
rios for further model validation. 

2.1. Defining Relationship 

Following [22], we formulate a general extended mixing model (EMM) for 
trophic level inference in terms of population means. In this section, to illustrate 
diet and trophic level parameters, we refer to the simulation scenario in Figure 2 
with two primary sources (s1 and s2), one consumer (s5) of primary sources, 
and a consumer (s7) of a primary source and the other consumer. Given a di-
rected adjacency matrix for the hypothesized food web graph, let m indicate a 
particular consumer (mixture) species with source species listed in the vector 

m  of length Sm indicating the non-zero column numbers for row m. For exam-
ple, the two consumers are 5m =  with { }5 1, 2=  and 7m =  with { }7 2,5= . 
Let mπ  be the probability vector of proportional contributions of the Sm 
sources to the mean diet for consumer m [e.g., ( )T

7 72 750.2, 0.8π π π= = = ]. Let 

mλ  be the mean trophic level of consumer m or sλ  be the mean or defined 
trophic level of source s (e.g., 1 1λ ≡ , 2 1λ ≡ , 5 2λ = , and 7 2.8λ = ). Let isδ  
be the mean isotope ratio for isotope i in source s. Let i∆  be the mean per 
trophic level enrichment for isotope i, previously illustrated in Figure 1(d). Let  
 

 

Figure 2. Simulation Scenario 1. (left) Species 1 and 2 are producers (primary autotroph 
sources) and are both trophic level 1 by definition. Species 5 consumes a diet consisting of 
70% Species 1 and 30% Species 2, and is trophic level 2. Species 7 consumes a diet con-
sisting of 80% Species 5 and 20% Species 2, thus its trophic level is ( ) ( )0.8 2 0.2 1 1 2.8+ + = . 

(right) The associated directed adjacency matrix. 
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isκ  be the typical concentration of element i in source s, and misη  be the typi-
cal assimilation efficiency for consumer m of element i for source s. 

The population mean vector isotope ratio ( mδ ) within consumer population 
(species) m is assumed to be a convex combination of the mean isotope ratios 
( mδ ) in the source populations, ms∈  , accounting for trophic fractionation (Δ), 
elemental concentration (κ), and assimilation efficiency (η). Assuming there are 
I isotopes (three in our applications: C, N, and S), the defining relationship for 
the EMM [1], is  

( ){ }
EMM : , 1, , .m

m

is m s i is mis mss
mi

is mis mss

i I
δ λ λ κ η π

δ
κ η π

∈

∈

+ − ∆
= =
∑

∑




      (1) 

Two special cases include the (CMM), where 1misη ≡  for all i and s, and the 
(BMM) in (2), where both 1isκ ≡  and 1misη ≡  for all i and s,  

( ){ }BMM : , 1, , .
m

mi is m s i ms
s

i Iδ δ λ λ π
∈

= + − ∆ =∑



         (2) 

Note that while the EMM interpretation of mπ  is “how much did the con-
sumer eat”, the BMM interpretation is “how much did the consumer assimilate”, 
especially when the concentration and assimilation assumptions for the BMM 
are not sensible. 

The next several subsections make explicit standard stable isotope mixing 
model assumptions; we discuss the trophic level innovation last. 

2.2. Source Isotope Ratio and Concentration Model, LS 

The source mean isotope ratio and concentration vectors, ( )( )TTT ,s s sfδκµ δ κ= , 

ms∈  , are estimated based on independent samples from each of the source  

populations. Let ( ){ }TT T

1
,

sK

s sk sk
k=

= d c  be a random sample of size sK  from 

source population s, with  

( ) ( )ind, ~ Normal , ,sk
s s s s

skf δκ δκ δκ δκµ µ
 

Σ Σ 
 

d
c

            (3) 

1, , sk K=  , where sδκΣ  is the covariance matrix. Each skd  and skc  have I 
elements, one for each isotope. Assuming independence across samples and 
priors, the source isotope ratio and concentration model for sources contribut-
ing to consumer m is ( ) ( )S | , ,

m s s s s ssL g gδκ δκ δκ δκµ µ
∈

= Σ Σ∏


 , where  
( )| ,s s sg δκ δκµ Σ  is a product of sK  multivariate normal densities and the 

prior ( ),s sg δκ δκµ Σ  is to be specified in Section 2.6. 

2.3. Per Trophic Level Fractionation Model, LF  

Ideally, fractionation for each consumer-source pair is determined by conduct-
ing a diet experiment and estimating the difference between the mean consumer 
and mean source isotope ratio vectors. In this case, the isotope partition of mod-
el (3) can be used independently for each of the consumer and diet tissues, 
where the difference between the mean vectors is the trophic fractionation, Δ. 
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The more common situation is to use trophic fractionation estimates from 
prior studies. In this case, a prior for Δ can be specified, and is often assumed to 
be the same for multiple consumer-source pairs, ( )F ,L g ∆= ∆ Σ , see Section 2.6. 

2.4. Assimilation Efficiency Model, LE  

Recall, the assimilation efficiency for consumer m is the proportion of each ele-
ment 1, ,i I=   in the diet portion from source s that is digested and becomes 
incorporated in the measured tissue of consumer m. Assimilation efficiencies 
can vary by consumer-source pairs, by element, and by consumer tissue type 
(blood, muscle, fat, hair, etc.). 

The assimilation efficiency vectors, eηµ , 1, ,e E=  , are estimated based on 
samples from E diet experiments or other estimation technique. Let { } 1

eK
e ek k=
= e  

be a random sample of size eK  from the eth experiment, with  

( ) ( )ind| , ~ Normal , ,ek e e e ef η η η ηµ µΣ Σe                 (4) 

1, , ek K=   and 1, ,e E=  . Each eke  has I elements, one for each isotope. 
Assuming independence across samples and priors, the assimilation efficiency 
model is ( ) ( )E 1 | , ,E

e e e e eeL g gη η η ηµ µ
=

= Σ Σ∏  . Finally, assimilation efficiencies 
for each source are ( )1

ms ef ηη µ−=  for an appropriate pairing of consumer m 
and source s with experiment e. 

Note that both concentration and assimilation efficiency are proportions. 
Thus, if either are not normally distributed, for example because the proportions 
are near the 0 or 1 boundary, the specification of ( )f ⋅  might be ( )logit ⋅  or 
another appropriate transformation so that the data on the transformed scale are 
normal. 

2.5. Consumer Model, LC 

We obtain a random sample { } 1

mJ
m mj j=
= b  of isotope (and concentration val-

ues, if consumer m is a source to another consumer) responses from each con-
sumer population, 1, ,m M=  , with ( )| , , , ~ Normal ,mj m bm m m m bmπ λ δΣ Θ Σb , 
where mΘ  includes the δ, κ, η, Δ, and λ means related to consumer m. The 
population mean response mδ  depends on mπ  and mΘ  through the in (1), 
so the normal sampling model ( )| , ,m m bm mg π Σ Θ  is conditional on 
( ), ,m bm mπ Σ Θ  but independent of 

mΘΣ , the covariance matrices associated with 

mΘ . The consumer model is ( ) ( ) ( ) ( )C 1 | , ,M
m m bm m m bm mmL g g g gπ π λ

=
= Σ Θ Σ∏  , 

where the priors on mπ  and bmΣ  are independent, and independent of mΘ . 
We also assume ( )bmg Σ  is defined as in Section 2.6. 

2.6. Prior Distributions  

The consumer sample   and each source and assimilation efficiency sample 

s  and e  assumes a ( )Normal ,µ Σ  model. It remains to specify prior dis-
tributions for the μ and Σ parameters to complete the LS, LF, and LE model com-
ponents, and the covariance component of LC. For convenience, we follow 
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common practice and use the conjugate prior ( )0 0| ~ Normal ,µ µ νΣ Σ  and 
( )0 0~ Inv-Wishart ,vΣ Σ , the product of which is called the distribution. A li-

miting form of the conjugate prior is Jeffrey’s prior, ( ) ( )1 2, Ig µ − +Σ ∝ Σ . 

2.7. Diet Model  

For the diet model there are several options for modeling a probability vector on 
the simplex. One option is to assume ( )0 0~ Dirichletm m mJπ π , where 0msπ  is 
the prior knowledge for the sth diet proportion and 0J  is the effective sample 
size for the prior. Choosing 0 0 1msJ π = , 1, ,s S=  , defines a uniform distribu-
tion over the simplex. While the Dirichlet imposes a restrictive correlation 
structure, it requires only Sm parameters, the number of diet sources for con-
sumer s. 

For a more general covariance structure, options include the generalized Di-
richlet distribution [29] or logistic-normal distribution [30]. Modeling the cova-
riance structure between elements of the diet probability vector will be most 
useful in the case when the model is identifiable (the (1) perfectly constrained 
and (2) overconstrained cases) or when strong prior information exists (e.g., that 
pairs of sources are commonly consumed together or substituted for each other). 

2.8. Trophic Level Model  

The consumer trophic level model, ( )0|m mg λ λ , can be flexible to accommodate 
any distribution summarizing the best knowledge. For example, if trophic values 
are equally likely within bounds, a uniform distribution may be specified; for 
example, ( )0 1 0 2 0 1 0 2| , ~ Uniform ,m m m m mλ λ λ λ λ , where 0 1 1mλ =  and  

0 1 0 2,m mλ λ  represents four trophic levels of uncertainty. Other sensible choices 
include a normal distribution or a location-scale beta distribution. 

Source trophic levels, sλ , might be considered fixed and known, particularly 
primary producer sources ( 1sλ = ) or sources feeding exclusively on primary 
producers ( 2sλ = ). But, they may also be given distributions to represent un-
certainty in their values. 

2.9. Modeling Consumers of Consumers 

We consider two possible strategies for modeling trophic level and diet in a mul-
tilevel foodweb. The first strategy (A) models each consumer as a function of the 
primary sources (those sources on which all consumers depend) with potential 
intermediate consumers implicitly modeled. The diet graph for this strategy has 
primary sources connect directly to each consumer bipassing intermediate con-
sumers. The second strategy (B) models a higher consumer in the hypothesized 
foodweb by treating the specified intermediate consumers explicity as sources to 
that higher consumer. This is the strategy described in the model exposition. 
Figure 4 illustrates both models using the example described in Section 3. In 
general, the foodweb can be defined as a directed acyclic graph, with cycles being 
modeled implicitly (such as a canibalistic population), thus a higher consumer 
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can consume primary sources or explicitly-specified intermediate consumers. 
Given the model specifications above it remains to specify informative priors 

for model parameters and fit the joint posterior distribution given the data and 
priors. After model considerations in Section 2.10, and model checking of simu-
lated scenarios in Section 2.12, we make trophic level inference for an aquatic 
foodweb in Section 3. 

Modeling Proportions on the Logit Scale 
The concentration and assimilation efficiency proportion parameters can be 
modeled on the logit scale using the multivariate logistic normal distribution [30] 
[31] and, for concentrations, incorporated in the multivariate normal model. 
This strategy meets the desire to compute on MVN distributions with covaria-
tion within concentrations and with isotopes while imposing a sensible distribu-
tion on the proportion scale. 

2.10. Bayesian Inference: General Considerations 

Many of the parameters of the full posterior distribution  
( ) S F E Cparameters | datag L L L L∝  are of minor interest. A more focused analysis 

considers the parameters { }( )1
, , ,

M
m m bm mmβλ π

=
Σ Θ  that index the sampling dis-

tribution of each consumer isotope ratio distribution. The source samples and 
diet experiments can then be viewed as primarily needed to generate prior in-
formation for mΘ , which is required to estimate mλ  and mπ , the features of 
primary interest. In particular, each source and diet sample   contributes 
( ) ( ) ( ) ( )| , , , |g g g gµ µ µΣ Σ = Σ    to the joint distribution for some 

( ),µ Σ . As Σ  does not appear in the consumer model, it can be integrated out 
of ( ), |g µ Σ  , giving ( )|g µ   which can be used as an “updated prior” 
along with the consumer model; see [22] for an exact importance sampling algo-
rithm. The full posterior can be simulated in available software, such as Win-
BUGS [32], OpenBUGS, or JAGS, provided all priors are proper. Finally, infe-
rence for the parameters of interest can be summarized from their posterior dis-
tributions. 

The Bayesian method will use all observations, including those with missing 
values, by predicting (imputing) the missing data on each MCMC step then us-
ing the full “augmented” dataset for parameter estimation. 

2.11. Parameter Identifiability and MCMC Convergence 

Convergence is a problem in implementations of the full EMM. The defining re-
lationship in (1) specifies a product of the three proportion parameters for diet 
(π), concentration (κ), and assimilation efficiency (η). The MCMC chains for 
these parameters endlessly drift aimlessly over the entire range of their support, 
possibly due to identifiability issues. In simulations, this is true even when the 
priors for η are extremely informative (e.g., nearly a point mass worth 1000 s of 
observations). The BMM does not have this challenge. It converges quickly to 
the correct posterior. Thus, successful application of the EMM requires addi-
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tional constraints, such as setting κ and/or η to constants or more stringently 
bounding their support. Such more stringent bounds would not be unreasonable, 
for example the observed ranges of concentrations of carbon or nitrogen in a 
particular source population is relatively narrow (maybe 20%) over the [0, 1] in-
terval, similarly for assimilation efficiencies. More work to address this issue is 
required. 

2.12. Model Checking for Simulation Scenario 1 

To check both that model inferences make sense and that the model is consistent 
with the data, posterior predictive distributions and posterior densities are as-
sessed. Results from Simulation 1 shown in Figure 3, detailed in the Supple-
mentary Materials Section A, indicate concordance between the posterior and 
true values, and the bias that exists is a function of the simulated data having a 
mean slightly different from the true mean. See Appendix Section B for results of 
more extensive simulation Scenarios 2 and 3. 

3. Bottlenose Dolphin BMM Example 
3.1. Description of Data and Goals 

Data collection methods and elemental analysis are described elsewhere [25] 
[26], and we limit ourselves to summarizing the data and goals for this example. 
Potential organic matter sources were collected from St. George Sound, just off-
shore of the Florida State University Coastal and Marine Laboratory, St. Teresa, 
Florida from April 2007 through July 2009. Potential sources collected included 
seagrass epiphytes, macroalgae, benthic microalgae, plankton, and seagrass. 
Consumer samples were collected by otter trawl during April through November 
of the sampling years (2007-2009). Consumers sampled included numerically 
abundant species: Atlantic croaker (Micropogonias undulatus), pigfish (Ortho-
pristis chrysoptera), pinfish (Lagodon rhomboides), mojarra (Eucinostomus gu-
la), and silver perch (Bairdiella chrysoura), among others. Fish were gutted and 
muscle tissue was removed from bones and skin, dried, and ground to a fine  
 

 

Figure 3. Simulation 1 Strategy B posterior predictive distributions (top row) and posterior densities. Black curves are the post-
erior distributions, gray curves are the data distributions (top row), red solid lines indicate the true parameter value input to the 
simulation, and blue dashed lines indicate the observed mean data value. 
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powder for isotopic analysis. Bottlenose dolphin (Tursiops truncatus) skin tis-
sues were obtained via remote dart biopsy, dried, and ground to a homogeneous 
powder for isotopic analysis. Stable isotope and elemental concentration analys-
es for carbon (δ13C, [C]), nitrogen (δ15N, [N]), and sulfur (δ34S, [S]) were con-
ducted. 

We ask one set of questions using two complimentary models of the foodweb 
discussed in Section 2.9 and shown in Figure 4. “For each consumer (mixture), 
what proportion of the consumer’s mean population diet ( mπ ) comes from each 
source and what is its mean trophic level ( mλ )?” Model A describes the propor-
tion of a consumer’s diet (Atlantic croaker, pigfish, pinfish, mojarra, silver perch, 
and bottlenose dolphin) originating from the primary sources (seagrass epi-
phytes, macroalgae, benthic microalgae, plankton, and seagrass) implicitly via 
intermediate consumers, and the trophic level of each consumer. Model B is the 
same except dolphin are explicitly modeled using the five consumer fish as 
sources. 

The data plotted in Figure 5 are the source and consumer samples in isotopic 
space. The (δ13C, δ15N) plot indicates that nitrogen will provide the primary in-
formation regarding trophic level because of the large fractionation from sources 
to consumers and the narrow source convex hull. Some sources and consumers 
have strong correlations between measurements, others do not. There isn’t 
strong evidence of violation of the multivariate normal distributional assump-
tions for isotope ratios. Missing data (benthic microalgae has 4 missing sulfur 
values, plankton has 2 missing sulfur values) are imputed at each MCMC step, 
so no data are discarded due to partial missingness. 
 

 

Figure 4. Primary producers (sources) are at trophic level 1. Strategy A describes the 
proportion of a consumer’s diet originating from the primary sources, implicitly via in-
termediate consumers. Strategy B explicitly models the dolphin diet as proportions of five 
consumer fish. For each organism, the sample size and information about missing values 
are provided. 
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Figure 5. Dolphin dataset isotope ratio observations for the five sources, five fish consumers, and the 
dolphin consumer. Small points indicate observations, large points indicate the sample mean with 95% 
confidence intervals for the mean and 75% confidence ellipse for the data distribution, and the shaded 
region is the convex hull of the source means where, after adjusting for trophic fractionation, the con-
sumer means must lie under the basic mixing model. 

 
To explore a factorial design of model choices, we present the results from the 

BMM using the following options for comparisons (many others were also run): 
isotope covariance as independent or selected covariance relationships; diet 
prior either using a vague or informative prior; trophic level prior either using a 
vague or informative prior; and Model strategies A and B are fit as separate 
models (16 combinations). The selected covariance relationships we choose to 
model depends on the sample size for each source and on the observed cova-
riance relationships among the three-dimensional isotope observations. We have 
support for modeling all covariance terms for benthic and plankton sources, all 
for mojarra and dophin consumers, but not enough data or covariance to sup-
port modeling other terms. It is not necessary to model all covariances or none. 
Given enough data we would model all covariances and let the data decide, but 
when data is sparce fewer parameters will improve model estimation. 
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Number of Parameters vs Observations 
In our example, three isotope ratio and three concentration measurements are 
jointly taken on each source observation. For a three-dimensional multivariate 
normal model there are 9 parameters to estimate: 3 means, 3 variances, and 3 
covariances. While we typically would like at least as many observations as pa-
rameters estimated, the Bayesian model allows for fewer, though estimation may 
be strongly influenced by the prior (even with a weakly informative prior). Sim-
plifing the multivariate normal model can reduce the number of parameters 
substantially (since most parameters are variance/covariance terms) by treating 
certain values as being independent. For example, if isotope ratios are assumed 
independent, the number of parameters reduces to 6 (3 × (1 mean and 1 va-
riance)). Note that in some cases, even an independence model has more para-
meters than we have observations. Most marine studies will ordinarily not have 
many source samples, as they are much more time consuming to both collect 
and process than fish samples. J.W. Tukey suggests that the calculation of the kth 
moment ought to be based on at least 5k observations, as found on p. 1.72 of [33], 
thus at least 25 observations should be used to estimate variances and cova-
riances. Therefore, for best estimation of sources, consider sample sizes of at 
least a few more than the number of parameters in the model, which would be 
15 - 25 or more for the full multivariate normal model with three isotope ratios 
and three concentrations. Parameter estimates will be more precise if correlation 
is modeled when it exists. 

3.2. Informative Prior, Distributions 

While the general model provides the flexibility for any covariance structure 
among parameters informed by multivariate data, many of the prior distribu-
tions have a simplier structure (Section 3.1.1) because covariation information is 
either absent from the summaries in the literature and/or because there is insuf-
ficient evidence in the data to model dependencies. Since consumer (mixture) 
data is plentiful and because of observed relationships we model the full cova-
riance matrix for consumer isotopes. Since source data is scarce for some 
sources, and because insufficient evidence exists to suggest nonzero correlation 
between some pairs of isotopes and concentrations, we reduce the number of 
parameters by modeling only specific relationships. 

Prior information from seven literature sources to inform all the model para-
meters is provided in Table 1 for sources and Table 2 for consumers. 

3.3. Results 

We focus on the two primary quantities of interest: trophic level and diet pro-
portions. While meaningful informative trophic level priors were provided for 
all consumers, informative diet proportions priors were provided for only pin-
fish and dolphin. 

3.3.1. Trophic Level Results 
Selected trophic level posterior distributions are presented in Figure 6. We  
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Figure 6. Posterior distributions for trophic level ( mλ ) for all consumers and model types: model , independent (Sind) or selected 
(Ssel) covariance relationships, vague (Pn) or informative (Pi) diet prior, vague (Tn) or informative (Ti) trophic level prior, and 
model strategies A or B. 
 
Table 1. Prior information used to specify source-related model hyperparameters. 

Source isotope ratios for LS Citations 

s name T
0 sδµ  0 sδΣ  0 sδυ  Isotopes 

1 epiphytes ( )17.55,5.85,18.20−  ( )2 2 2diag 1.97 ,1.05 ,2.05  1 + 2 CNSMS01 

2 macroalgae ( )16.75,7.00,18.18−  ( )2 2 2diag 0.50 ,2.82 ,1.60  1 + 2 CNSMS01 

3 benthic ( )15.80,7.25, 3.90−  ( )2 2 2diag 1.56 ,0.78 ,3.68  1 + 2 CNMS01 SCNP95 

4 plankton ( )21.77,9.92,15.38−  ( )2 2 2diag 0.77 ,0.96 ,2.55  1 + 2 CNSMS01 

5 seagrass ( )12.20,6.05,11.48−  ( )2 2 2diag 1.32 ,1.22 ,4.10  1 + 2 CNSMS01 

Per-trophic level fractionation factors for LF  

i name 0µ ∆  2
0σ ∆  0υ ∆   

1 carbon 0.4 1.32 107 CP02 

2 nitrogen 3.4 12 56 NP02 

3 sulphur 0.4 ( )2
21.9 0.52 13=  13 SML03 

CNP95[34], ML03[35], MS01[36], P02[37]. 
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Table 2. Prior information used to specify consumer-related model hyperparameters. 

Consumer isotope ratio variances for LC    

m name  0bmΣ  0bmν   

1 croaker  ( )2 2 2diag 2.75 ,0.50 ,1.49  3 CNSSM93 

2 pigfish  ( )2 2 2diag 0.85 ,0.87 ,1.71  6 CNSSM93 

3 pinfish  ( )2 2 2diag 0.35 ,0.57 ,0.81  2 + 1 CNSSM93 

4 mojarra  ( )2 2 2diag 0.35 ,0.57 ,0.81  3 as pinfishg 

5 perch  ( )2 2 2diag 2.75 ,0.50 ,1.49  3 as croakerg 

6 dolphin  ( )2 2 2diag 1.00 ,1.00 ,1.73  3 inflating sample varg 

Consumer diet proportions for LC    

m name T
0mπ   0J   

1 croaker ( )0.20,0.20,0.20,0.20,0.20   5 = S dietg 

2 pigfish ( )0.20,0.20,0.20,0.20,0.20   5 dietg 

3 pinfish ( )0.20,0.20,0.20,0.20,0.20   5 dietg 

4 mojarra ( )0.20,0.20,0.20,0.20,0.20   5 dietg 

5 perch ( )0.20,0.20,0.20,0.20,0.20   5 dietg 

6 dolphin ( )0.20,0.20,0.20,0.20,0.20  (of fish consumers 1 - 5) 5 dietg 

3 pinfish ( )0.47,0.30,0.05,0.06,0.12   10 dietWAG07 

6 dolphin ( )0.23,0.23,0.23,0.08,0.23  (of fish consumers 1 - 5) 10 dietg 

Consumer trophic levels for LC Source trophic levels   

m name ( )0 1 0 2Uniform ,m mλ λ  s name 0sλ   

1 croaker (1, 5) 1 epiphytes 1 Consumerg 

2 pigfish (1, 5) 2 macroalgae 1 Sourceg 

3 pinfish (1, 5) 3 benthic 1  

4 mojarra (1, 5) 4 plankton 1  

5 perch (1, 5) 5 seagrass 1  

6 dolphin (2, 6)    

m name ( )0 1 0 2Normal ,m mλ λ    ConsumerAW06,AW08 

1 croaker (2.87, 0.192) from 175n =     

2 pigfish (2.16, 0.412) as pinfish    

3 pinfish (2.16, 0.412) from 316n =     
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Continued 

4 mojarra (2.16, 0.412) as pinfish    

5 perch (2.87, 0.192) as croaker    

6 dolphin ( )( )22.16 1, 0.41 0.2+ +  as pinfish    

AW06, AW08[38] [39], using summer mean estimates of trophic level from [38] (Table 2, no uncertainty), so we use SEs from [39] 
which include both summer and winter so will overestimate uncertainty, and assume that pigfish is similar to pinfish. SM93[40], 
WAG07[41] we allocated their algae, benthic, plankton, and seagrass, then the remainder (C3 and C4) was assigned to epiphytes 
gguess by the authors. 

 
observe generally that pinfish are estimated to be between trophic level 2.4 and 
2.8, indicating reliance on both primary sources and intermediate consumers; 
mojarra are between 1.8 and 2.4, indicating reliance principally on primary 
sources; and dolphin are between 2.9 and 3.7. Trophic levels are estimated 
slightly lower for vague diet priors (Pn vs Pi). Model strategies A and B give 
roughly equal inference regarding location and spread for trophic level. 

3.3.2. Diet Proportion Results 
Selected diet proportion posterior distributions are presented in Figure 7. For 
pinfish, the diet posteriors are more concentrated with the informative diet prior 
(Pi), and not influenced by the trophic prior. For pinfish, shile benthic is the 
primary source with a vague diet prior, an informative prior indicates epiphytes 
are the primary source. For mojarra, benthic is the primary source. Model strat-
egies A and B give the same inference for all consumers. Note that dolphin mod-
el strategies A and B are not comparable since the sources considered are differ-
ent, dolphin Model strategy B can be thought of as weighted averages of the fish, 
which in turn are weighted averages of the primary sources. 

The mojarra and pigfish diet proportion results reveal a reliance on benthic 
sources regardless of the model chosen. These results are consistent with sto-
mach content analyses that found mojarra in the size ranges we sampled (7.5 - 9 
cm) are primary carnivores feeding largely on polychaetes [42] [43] and that 
pigfish in the size range we sampled (10.5 - 16.5 cm) largely consume benthic 
invertebrates [43]. The primary source for pinfish varied between models de-
pending on the informativeness of the priors. The informative priors for pinfish 
were established from published results of the implementation of a previous iso-
tope model [41]. The observed change in the relative rankings of sources in our 
analyses suggests that pinfish in St. George Sound may have a different diet than 
those studied by [41]. Pinfish diets are notoriously inclusive or opportunistic 
[43]. Some studies based on stomach content analyses suggest that seagrass (and 
associated epiphytes) make up a large proportion of pinfish diets (e.g., [44] [45] 
[46] [47]), while others suggest that pinfish ingest seagrass material incidentally 
with other food items [48]. Our vague prior results suggest that benthic sources, 
rather than seagrass or associated epiphytes, dominate pinfish diets, a result 
consistent with reports from Crystal River, FL by [43] that pinfish of the size  
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Figure 7. Posterior distributions for diet proportions ( sπ ) for selected consumers and model types. For illustration we present the 
results for three consumers, independent (Sind) or selected (Ssel) covariance relationships, vague (Pn) or informative (Pi) diet 
prior; vague (Tn) or informative (Ti) trophic level prior; and Model strategies A or B. 

 
range collected in our study (>8 cm) primarily consume shrimp and other fishes. 
Further complicating dietary estimates, pinfish are also known to undergo a 
progression of ontogenetic dietary changes [43] [44] where the earliest stages are 
planktonic, followed by an herbivorous stage, and finally by carnivory. Thus size 
differences (as well as geographic differences) among studies may render the 
prior information invalid or misleading. 

3.4. Discussion 

Our results differ from previous analyses, which is not surprising given the dif-
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ferent model structure and inclusion of prior information. For example, we es-
timate croaker to be roughly between trophic levels 2.4 and 3, while previous es-
timates were a third of a trophic level higher between 2.7 and 3.4 [25] [26]. One 
explanation is that these previous models estimated that croaker’s primary 
source was benthic, while our model indicates that plankton is the primary 
source. This difference in trophic level, therefore, could be the result of 15N dif-
ferences between basal plankton and basal benthic organic matter. 

4. Discussions 

This model is easily extended to include covariates such as consumer sex and age, 
time of year, and sources that change over time [22]. Subject-specific trophic 
level and diet can also be estimated via hierarchical Dirichlet distributions [18]. 

Results from one study (e.g., FL dolphin) may be used to inform priors for 
other studies (e.g., TX dolphins) when the systems are very similar; otherwise 
vague priors may be more appropriate. The adequacy of selected priors cannot 
be tested by Bayesian or any other methods if we have only a small amount of 
data. But with enough data this becomes possible; for then the posterior density 
of the parameter from a vague prior, such as Jeffreys, becomes sharply peaked, 
with the data alone pointing to a well-defined value of the parameter. An infor-
mative prior sharply peaked at a very different value thus stands in conflict with 
the evidence of the data; intuitively, we would be led to doubt the validity of our 
prior information or model. 

The most important prior information comes from the ecological expert about 
which sources to include in the diet model and the foodweb graph structure. The 
choice of sources can come from direct observation, the analysis of stomach or 
fecal contents, or contextual speculation. A missing source may be inferred if the 
consumer’s isotope ratio is not a convex combination of the included discrimi-
nation-corrected sources. Rejecting a source is more difficult since it depends on 
the relative positions of the source isotope ratio means and the consumer mean, 
and there is often some overlap between sources or, in the underconstrained sit-
uation, multiple convex combinations that explain the consumer isotope ratios. 
In our example, seagrass is a potential source, but is estimated as a low diet con-
tributer. Having a principled strategy for testing and excluding unimportant 
sources would be valuable since the dimension of the model space is determined 
by the number of sources. 

The mixing model relationships mentioned in Section 2.1 can simplify mod-
eling when appropriate. When assimilation efficiencies for sources are all equal 
(such as carnivores, when all approximately 100%) then using the CMM instead 
of the EMM will reduce the number of parameters and the need for prior infor-
mation to inform the efficiencies. Furthermore, if elemental concentrations are 
similar among sources, then using the BMM instead of the CMM will simplify 
modeling similarly. However, the more complicated EMM model is justified in 
situations where efficiencies are low or vary among potential sources. For exam-
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ple, when determining the dietary proportions of omnivores that feed on both 
plant and animal prey sources, or when elemental concentrations among poten-
tial sources vary, as when considering potential contributions of plankton and 
plant material. 

The BMM and EMM will yield different results, and the decision on which to 
use will depend on the context and the nature of the research question. For ex-
ample, the EMM results are useful for estimating primary production rates ne-
cessary to support secondary production in a system or for energy transfer cal-
culations or to calculate nutrient uptake. The BMM, which specifically estimates 
assimilated proportions, may prove more useful for studies related to bioaccu-
mulation of organic contaminants or heavy metal uptake. 

As discussed in Section 2.11, the full EMM has convergence issues possibly 
due to identifiability issues. Use of the CMM or EMM is currently restricted to 
strategies that impose additional constraints, such as setting concentration and 
assimilation efficiencies to constants or by stringently bounding their support. 

From an ecological perspective, there are at least three important applications 
for this model: assigning trophic niche, estimating energy flow, and assessing 
contaminant entry routes and bioaccumulation. 1) A trophic niche is the place 
or function of an organism in terms of organic matter utilization and trophic 
level. By grouping organisms by specialization (planktivorous-grass eaters, etc.) 
select species from a given niche can be monitored that encompassed the range 
of trophic habit in the area to provide information about the health of the eco-
system. For example, choosing a planktivore can inform about a system’s pelagic 
health. 2) Because energy flows from the primary producers up the food chain, a 
sample of seagrass with size and abundance data can help estimate the primary 
production necessary to support the estimated number of fish living in a given 
area. 3) Contaminants accumulate up the food chain, such as mercury in fish. In 
an effort to assess the relative health of ecosystems and potential ill-effects of 
contaminants, given an assessment of whether organic matter utilization con-
tributes to organic loading (for example, are benthic feeders more contami-
nated?), and by correlating concentration with trophic level, we can derive a 
bioaccumulation factor to compare between systems. 

Acknowledgements 

Sincere thanks to JA Nelson and JP Chanton for assistance with sample collec-
tion and isotope analysis. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Martínez del Rio, C. and Wolf, B.O. (2005) Mass-Balance Models for Animal Iso-

https://doi.org/10.4236/oje.2022.126020


E. B. Erhardt, R. M. Wilson 
 

 

DOI: 10.4236/oje.2022.126020 353 Open Journal of Ecology 
 

topic Ecology. In: Starck, J.M., Wang, T. and Wang, T., Eds., Physiological and 
Ecological Adaptations to Feeding in Vertebrates, Science Publishers, Enfield, Chapter 
6, 141-174.  

[2] Phillips, D.L. (2001) Mixing Models in Analyses of Diet Using Multiple Stable Iso-
topes: A Critique. Oecologia, 127, 166-170. https://doi.org/10.1007/s004420000571 

[3] Parnell, A.C., Phillips, D.L., Bearhop, S., Semmens, B.X., Ward, E.J., Moore, J.W., 
Jackson, A.L., Grey, J., Kelly, D.J. and Inger, R. (2013) Bayesian Stable Isotope Mix-
ing Models. Environmetrics, 24, 387-399. https://doi.org/10.1002/env.2221 

[4] McCormack, S.A., Trebilco, R., Melbourne-Thomas, J., Blanchard, J.L., Fulton, E.A. 
and Constable, A. (2019) Using Stable Isotope Data to Advance Marine Food Web 
Modelling. Reviews in Fish Biology and Fisheries, 29, 277-296.  
https://doi.org/10.1007/s11160-019-09552-4 

[5] Deines, P. (1980) The Terrestrial Environment. In: Fritz, P. and Fontes, J.C., Eds., 
Handbook of Environmental Isotope Geochemistry, Volume 1, The Isotopic Com-
position of Reduced Organic Carbon, Elsevier Science, New York, 329-406.  
https://doi.org/10.1016/B978-0-444-41780-0.50015-8 

[6] Kendall, C. and McDonnell, J.J. (Eds.) (1998) Isotope Tracers in Catchment Hy-
drology. Elsevier, Amsterdam, New York.  

[7] Sterner, R.W. and Elser, J.J. (2002) Ecological Stoichiometry: The Biology of Ele-
ments from Molecules to the Biosphere. Princeton University Press, Princeton.  
https://doi.org/10.1515/9781400885695 

[8] Briand, F and Cohen, J.E. (1987) Environmental Correlates of Food Chain Length. 
Science, 238, 956-960. https://doi.org/10.1126/science.3672136 

[9] Allesina, S., Alonso, D. and Pascual, M. (2008) A General Model for Food Web 
Structure. Science, 320, 658-661. https://doi.org/10.1126/science.1156269 

[10] Pauly, D. and Palomares, M.-L. (2005) Fishing Down Marine Food Web: It Is Far 
More Pervasive than We Thought. Bulletin of Marine Science, 76, 197-212.  

[11] Votier, S.C., Bearhop, S., MacCormick, A., Ratcliffe, N. and Furness, R.W. (2003) 
Assessing The Diet of Great Skuas, Catharacta Skua, Using Five Different Tech-
niques. Polar Biology, 26, 20-26. https://doi.org/10.1007/s00300-002-0446-z 

[12] Hobson, K.A. and Wassenaar, L.I. (Eds.) (2008) Tracking Animal Migration with 
Stable Isotopes. Academic Press, Amsterdam. 

[13] Hobson, K.A. and Wassenaar, L.I. (1999) Stable Isotope Ecology: An Introduction. 
Oecologia, 120, 312-313. https://doi.org/10.1007/s004420050864 

[14] Layman, C.A., Araujo, M.S., Boucek, R., Hammerschlag-Peyer, C.M., Harrison, E., 
Jud, Z.R., Matich, P., Rosenblatt, A.E., Vaudo, J.J., Yeager, L.A., Post, D.M. and 
Bearhop, S. (2012) Applying Stable Isotopes to Examine Foodweb Structure: An 
Overview of Analytical Tools. Biological Reviews, 87, 545-562.  
https://doi.org/10.1111/j.1469-185X.2011.00208.x 

[15] Post, D.M. (2002) The Long and Short of Food-Chain Length. Trends in Ecology & 
Evolution, 17, 269-277. https://doi.org/10.1016/S0169-5347(02)02455-2 

[16] Martínez Del Rio, C., Wolf, N., Carleton, S.A. and Gannes, L.Z. (2009) Isotopic 
Ecology Ten Years after a Call for More Laboratory Experiments. Biological Re-
views, 84, 91-111. https://doi.org/10.1111/j.1469-185X.2008.00064.x 

[17] Phillips, D.L. and Koch, P.L. (2002) Incorporating Concentration Dependence in 
Stable Isotope Mixing Models. Oecologia, 130, 114-125.  
https://doi.org/10.1007/s004420100786 

[18] Erhardt, E.B. (2009) Stable Isotope Sourcing Using Sampling. PhD Dissertation, 

https://doi.org/10.4236/oje.2022.126020
https://doi.org/10.1007/s004420000571
https://doi.org/10.1002/env.2221
https://doi.org/10.1007/s11160-019-09552-4
https://doi.org/10.1016/B978-0-444-41780-0.50015-8
https://doi.org/10.1515/9781400885695
https://doi.org/10.1126/science.3672136
https://doi.org/10.1126/science.1156269
https://doi.org/10.1007/s00300-002-0446-z
https://doi.org/10.1007/s004420050864
https://doi.org/10.1111/j.1469-185X.2011.00208.x
https://doi.org/10.1016/S0169-5347(02)02455-2
https://doi.org/10.1111/j.1469-185X.2008.00064.x
https://doi.org/10.1007/s004420100786


E. B. Erhardt, R. M. Wilson 
 

 

DOI: 10.4236/oje.2022.126020 354 Open Journal of Ecology 
 

University of New Mexico, Albuquerque. 

[19] Erhardt, E.B. and Bedrick, E.J. (2014) Inference for Stable Isotope Mixing Models: A 
Study of the Diet of Dunlin. Journal of the Royal Statistical Society: Series C, 63, 
579-593. https://doi.org/10.1111/rssc.12047 

[20] Phillips, D.L. and Gregg, J.W. (2003) Source Partitioning Using Stable Isotopes: 
Coping with Too Many Sources. Oecologia, 136, 261-269.  
https://doi.org/10.1007/s00442-003-1218-3 

[21] Erhardt, E.B., Wolf, B.O., Ben-David, M. and Bedrick, E.J. (2014) Stable Isotope 
Sourcing Using Sampling. Open Journal of Ecology, 4, 289-298.  
https://doi.org/10.4236/oje.2014.46027 

[22] Erhardt, E.B. and Bedrick, E.J. (2013) A Bayesian Framework for Stable Isotope 
Mixing Models. Environmental and Ecological Statistics, 20, 377-397.  
https://doi.org/10.1007/s10651-012-0224-1 

[23] Quezada-Romegialli, C., Jackson, A.L., Hayden, B., Kahilainen, K.K., Lopes, C. and 
Harrod, C. (2018) Trophicposition, An R Package for the Bayesian Estimation of 
Trophic Position from Consumer Stable Isotope Ratios. Methods in Ecology and 
Evolution, 9, 1592-1599. https://doi.org/10.1111/2041-210X.13009 

[24] Phillips, D.L., Inger, R., Bearhop, S., Jackson, A.L., Moore, J.W., Parnell, A.C., 
Semmens, B.X. and Ward, E.J. (2014) Best Practices for Use of Stable Isotope Mix-
ing Models in Food-Web Studies. Canadian Journal of Zoology, 92, 823-835.  
https://doi.org/10.1139/cjz-2014-0127 

[25] Wilson, R.M., Chanton, J., Lewis, F.G. and Nowacek, D. (2009) Combining Organic 
Matter Source and Relative Trophic Position Determinations to Explore Trophic 
Structure. Estuaries and Coasts, 32, 999-1010.  
https://doi.org/10.1007/s12237-009-9183-7 

[26] Wilson, R.M., Chanton, J., Lewis, F.G. and Nowacek, D. (2010) Concentration De-
pendent Stable Isotope Analysis of Consumers in the Upper Reaches of a Freshwa-
ter-Dominated Estuary: Apalachicola Bay, FL, USA. Estuaries and Coasts, 33, 
1406-1419. https://doi.org/10.1007/s12237-010-9304-3 

[27] Wilson, R.M., Kucklick, J.R., Balmer, B.C., Wells, R.S., Chanton, J.P. and Nowacek, 
D.P. (2012) Spatial Distribution of Bottlenose Dolphins (Tursiops truncatus) In-
ferred from Stable Isotopes and Priority Organic Pollutants. Science of the Total 
Environment, 425, 223-230. https://doi.org/10.1016/j.scitotenv.2012.02.030 

[28] Wilson, R.M., Nelson, J.A., Balmer, B.C., Nowacek, D.P. and Chanton, J.P. (2013) 
Stable Isotope Variation in the Northern Gulf of Mexico Constrains Bottlenose 
Dolphin (Tursiops Truncatus) Foraging Ranges. Marine Biology, 160, 297-2980.  
https://doi.org/10.1007/s00227-013-2287-4 

[29] Wong, T.-T. (1998)Generalized Dirichlet Distribution in Bayesian Analysis. Applied 
Mathematics and Computation, 97, 165-181.  
https://doi.org/10.1016/S0096-3003(97)10140-0 

[30] Aitchison, J. (2003) The Statistical Analysis of Compositional Data. Blackburn 
Press, West Caldwell. 

[31] Aitchison, J. (1982) The Statistical Analysis of Compositional Data. Journal of the 
Royal Statistical Society. Series B (Methodological), 44, 139-160.  
https://doi.org/10.1111/j.2517-6161.1982.tb01195.x 

[32] Lunn, D.J., Thomas, A., Best, N. and Spiegelhalter, D. (2000) WinBUGS—A Baye-
sian Modelling Framework: Concepts, Structure, and Extensibility. Statistics and 
Computing, 10, 325-337. https://doi.org/10.1023/A:1008929526011 

https://doi.org/10.4236/oje.2022.126020
https://doi.org/10.1111/rssc.12047
https://doi.org/10.1007/s00442-003-1218-3
https://doi.org/10.4236/oje.2014.46027
https://doi.org/10.1007/s10651-012-0224-1
https://doi.org/10.1111/2041-210X.13009
https://doi.org/10.1139/cjz-2014-0127
https://doi.org/10.1007/s12237-009-9183-7
https://doi.org/10.1007/s12237-010-9304-3
https://doi.org/10.1016/j.scitotenv.2012.02.030
https://doi.org/10.1007/s00227-013-2287-4
https://doi.org/10.1016/S0096-3003(97)10140-0
https://doi.org/10.1111/j.2517-6161.1982.tb01195.x
https://doi.org/10.1023/A:1008929526011


E. B. Erhardt, R. M. Wilson 
 

 

DOI: 10.4236/oje.2022.126020 355 Open Journal of Ecology 
 

[33] Sachs, L. (1992) Applied Statistics. Application of Statistical Methods [Angewandte 
Statistik. Anwendung Statistischer Methoden]. Springer, Berlin, New York. 

[34] Currin, C.A., Newell, S.Y. and Paerl, H.W. (1995) The Role of Standing Dead Spar-
tina alterniflora and Benthic Microalgae in Salt Marsh Food Webs: Considerations 
Based on Multiple Stable Isotope Analysis. Marine Ecology Progress Series, 21, 
99-116. https://doi.org/10.3354/meps121099 

[35] McCutchan Jr., J.H., Lewis Jr., W.M., Kendall, C. and McGrath, C.C. (2003) Varia-
tion in Trophic Shift for Stable Isotope Ratios of Carbon, Nitrogen, and Sulfur. Oi-
kos, 102, 378-390. https://doi.org/10.1034/j.1600-0706.2003.12098.x 

[36] Moncreiff, C.A. and Sullivan, M.J. (2001) Trophic Importance of Epiphytic Algae in 
Subtropical Seagrass Beds: Evidence from Multiple Stable Isotope Analyses. Marine 
Ecology Progress Series, 215, 93-106. https://doi.org/10.3354/meps215093 

[37] Post, D.M. (2002) Using Stable Isotopes to Estimate Trophic Position: Models, Me-
thods, and Assumption. Ecology, 83, 703-718.  
https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 

[38] Akin, S. and Winemiller, K.O. (2006) Seasonal Variation in Food Web Composition 
and Structure in a Temperate Tidal Estuary. Estuaries and Coasts, 29, 552-567.  
https://doi.org/10.1007/BF02784282 

[39] Akin, S. and Winemiller, K.O. (2008) Body Size and Trophic Position in a Tempe-
rate Estuarine Food Web. Acta Oecologica, 33, 144-153.  
https://doi.org/10.1016/j.actao.2007.08.002 

[40] Sullivan, M.J. and Moncreiff, C.A. (1993) Trophic Importance of Epiphytic Algae in 
Mississippi Seagrass Beds. Technical Report, Mississippi-Alabama Sea Grant Publi-
cation No MASGP-92-018, Mississippi-Alabama Sea Grant Consortium, Ocean Springs. 

[41] Winemiller, K.O., Akin, S. and Zeug, S.C. (2007) Production Sources and Food Web 
Structure of a Temperate Tidal Estuary: Integration of Dietary and Stable Isotope 
Data. Marine Ecology Progress Series, 343, 63-76.  
https://doi.org/10.3354/meps06884 

[42] Livingston, R.J., Niu, X., Lewis III, F.G. and Woodsum, G.C. (1997) Freshwater In-
put to a Gulf Estuary: Long-Term Control of Trophic Organization. Ecological Ap-
plications, 7, 277-299.  
https://doi.org/10.1890/1051-0761(1997)007[0277:FITAGE]2.0.CO;2 

[43] Carr, W.E.S. and Adams, C.A. (1973) Food Habits of Juvenile Marine Fishes Occu-
pying Seagrass Beds in The Estuarine Zone Near Crystal River, Florida. Transac-
tions of the American Fisheries Society, 102, 511-540.  
https://doi.org/10.1577/1548-8659(1973)102<511:FHOJMF>2.0.CO;2 

[44] Stoner, A.W. (1980) Feeding Ecology of Lagodon-Rhomboides (Pisces, Sparidae) 
Variation and Functional Responses. Fishery Bulletin - National Oceanic and At-
mospheric Administration, 78, 337-352.  

[45] Springer, V.G. and Woodburn, K.D. (1960) An Ecological Study of The Fishes of 
The Tampa Bay Area. Florida State Board of Conservation Professional Papers Se-
ries. Florida Department of Natural Resources Marine Research Laboratory.  

[46] Darnell, R.M. (1961) Trophic Spectrum of an Estuarine Community, Based on Stu-
dies of Lake Pontchartrain, Louisiana. Ecology, 42, 553-568.  
https://doi.org/10.2307/1932242 

[47] Darnell, R.M. (1958) Food Habits of Fishes and Larger Invertebrat of Lake Pont-
chartrain, Louisiana, an Estuarine Community. Institute of Marine Science, 5, 

https://doi.org/10.4236/oje.2022.126020
https://doi.org/10.3354/meps121099
https://doi.org/10.1034/j.1600-0706.2003.12098.x
https://doi.org/10.3354/meps215093
https://doi.org/10.1890/0012-9658(2002)083%5b0703:USITET%5d2.0.CO;2
https://doi.org/10.1007/BF02784282
https://doi.org/10.1016/j.actao.2007.08.002
https://doi.org/10.3354/meps06884
https://doi.org/10.1890/1051-0761(1997)007%5b0277:FITAGE%5d2.0.CO;2
https://doi.org/10.1577/1548-8659(1973)102%3C511:FHOJMF%3E2.0.CO;2
https://doi.org/10.2307/1932242


E. B. Erhardt, R. M. Wilson 
 

 

DOI: 10.4236/oje.2022.126020 356 Open Journal of Ecology 
 

353-416. 

[48] Caldwell, D.K. (1957) The Biology and Systematics of The Pinfish, Lagodon Rhom-
boides (Linnaeus). Bulletin of the Florida State Museum Biological Sciences, 6, 
77-173. 

 
 
 

https://doi.org/10.4236/oje.2022.126020


E. B. Erhardt, R. M. Wilson 
 

 

DOI: 10.4236/oje.2022.126020 357 Open Journal of Ecology 
 

Appendix A. Supplementary Materials 

Please see the zip file for all examples in this paper, including well-documented 
OpenBUGS model, data, script, and init files. 

Supplemental Simulations: Simulation Scenarios 1, 2, and 3 use sample sizes 
of 30 for each component with varying amounts of correlation and priors are 
vague. Report and R code are available at https://statacumen.com/?p=3884. 

Dolphin Example: Application data and OpenBUGS code for each model 
scenario is available at https://statacumen.com/?p=3884. 

Appendix B. Simulation Scenarios 2 and 3 

Details for the simulation scenarios are provided in the Supplementary Materials 
Section A. 

The Simulation 2 and 3 foodweb graphs are given in Figure A1. The results 
for Strategy B in Figure A2 indicate concordance between the posterior and true 
values, and the bias that exists is a function of the simulated data having a mean 
slightly different from the true mean. The results for Strategy A in Figure A3 are 
similar. 
 

 

Figure A1. Simulation Scenarios 2 and 3. 
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Figure A2. Simulations 2 (top) and 3 (bottom) Strategy B, posterior predictive distributions (top row of 
each) and posterior densities. Black curves are the posterior distributions, gray curves are the data distribu-
tions (top row of each), red solid lines indicate the true parameter value input to the simulation, and blue 
dashed lines indicate the observed mean data value. 
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Figure A3. Simulations 1, 2 and 3 Strategy A, posterior predictive distributions (top row of each) and 
posterior densities. Black curves are the posterior distributions, gray curves are the data distributions (top 
row of each), red solid lines indicate the true parameter value input to the simulation, and blue dashed lines 
indicate the observed mean data value. 

Appendix C. Isotope Ratio Correlations 

Table A1 gives the observed pairwise correlations between the isotope ratio ob-
servations. 
 
Table A1. Source and consumer correlations between isotope ratio observations. 

Sources     Consumers     

  dC dN dS   dC dN dS 

epiphytes 

dC 1.00 −0.63 −0.91 

croaker 

dC 1.00 −0.76 0.21 

dN −0.63 1.00 0.77 dN −0.76 1.00 0.22 

dS −0.91 0.77 1.00 dS 0.21 0.22 1.00 

macroalgae 

dC 1.00 −0.40 −0.81 

mojarra 

dC 1.00 −0.33 −0.86 

dN −0.40 1.00 0.44 dN −0.33 1.00 0.19 

dS −0.81 0.44 1.00 dS −0.86 0.19 1.00 

benthic 

dC 1.00 0.63 0.57 

pigfish 

dC 1.00 0.16 −0.38 

dN 0.63 1.00 0.78 dN 0.16 1.00 0.57 

dS 0.57 0.78 1.00 dS −0.38 0.57 1.00 

plankton 

dC 1.00 0.66 0.33 

pinfish 

dC 1.00 −0.35 −0.82 

dN 0.66 1.00 0.74 dN −0.35 1.00 0.73 

dS 0.33 0.74 1.00 dS −0.82 0.73 1.00 

seagrass 

dC 1.00 0.17 0.78 

silverperch 

dC 1.00 −0.44 −0.39 

dN 0.17 1.00 0.01 dN −0.44 1.00 0.06 

dS 0.78 0.01 1.00 dS −0.39 0.06 1.00 

     

dolphin 

dC 1.00 0.35 −0.35 

     dN 0.35 1.00 0.66 

     dS −0.35 0.66 1.00 
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