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Abstract 
As an important ecological tree species in northern China, Populus simonii 
plays a crucial role in maintaining ecological balance and promoting envi-
ronmental sustainability. The academic community has conducted a series of 
in-depth studies on this species, covering key areas such as genomics, survival 
mechanisms, and genetic breeding. Through the analysis of the genomic 
structure and function of P. simonii, we have not only revealed the molecular 
basis for its adaptation to harsh environments but also identified key genes 
that promote its growth and resistance to pests and diseases. Furthermore, 
exploring the survival mechanisms of P. simonii has deepened our under-
standing of its stress resistance traits, including how it effectively copes with 
abiotic stresses such as drought, salinization, and heavy metal pollution. In 
genetic breeding, significant progress has been made through the application 
of modern biotechnology, improving the growth rate and wood quality of P. 
simonii and enhancing its environmental adaptability and disease resistance. 
These research findings have not only enriched our knowledge of the biolog-
ical characteristics of P. simonii but also provided a solid scientific founda-
tion for its application in ecological restoration, forestry production, and en-
vironmental management. 
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1. Introduction 

Over the past decade, significant advancements have been made in the research 
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of P. simonii, a fast-growing deciduous tree native to northern China. Known 
for its strong adaptability and excellent compatibility in mixed stands, P. simonii 
is often used as an ideal parent for short-rotation forestry and the selection of 
clonal varieties of poplar trees [1]. In the realm of ecological protection, P. si-
monii plays a crucial role, especially in combating land desertification and in en-
vironmental restoration projects, demonstrating its unique value [2]. In recent 
years, the academic community has engaged in in-depth discussions and re-
search on various aspects of P. simonii, including genomics, resistance mechan-
isms, population studies, breeding, and afforestation techniques. These research 
outcomes have not only deepened our understanding of the biological characte-
ristics of P. simonii but also provided a solid scientific foundation for its protec-
tion, management, and utilization. By integrating the related literature published 
during this period, we can clearly observe the development trends in the field of 
P. simonii research and the potential of this tree species in future ecological res-
toration and sustainable forestry practices. 

2. Research Progress of P. simonii Genomics 

P. simonii is widely distributed in the northern hemisphere and has a long history 
of cultivation. It is of great value to ecological environment protection and eco-
nomic development. However, the lack of complete genomic information has li-
mited the development of new varieties with greater adaptability and commercial 
value for a long time. In recent years, scientists have made breakthrough progress 
in studying the genome of P. simonii. In 2016, Mohaddeseh Mousavi et al. [3] 
constructed the genome reference sequence of P. simonii for the first time and 
identified thousands of high-quality single nucleotide polymorphism sites (SNPs). 
On this basis, in 2020, Hainan Wu and his team further improved the genetic 
map of P. simonii, successfully located 336 contigs on 19 pseudochromosomes, 
and predicted nearly 40,000 functional genes [4]. In the same year, the chloroplast 
genome of P. simonii was also determined, which contains 131 complete gene 
sequences [5]. Not only that, the successful assembly of the poplar ring mito-
chondrial genome is considered a more significant breakthrough. Research shows 
that the mitochondria a ring-shaped molecule encoding three proteins, with a to-
tal length of 781.5 kb [5]. Recently, Yilian Zhao [6] used fluorescence in situ hy-
bridization (FISH) technology to construct a high-resolution karyotype map, 
which further improved the quality of the P. simonii genome assembly. These re-
search results deepen our understanding of the genetic diversity within the poplar 
species and provide valuable information for comparative genomics research on 
poplar and identification of genetic variation in F1 hybrids. They also contribute 
to the development and development of genetic resources of other plant species. 
Genome assembly provides strategy and direction. 

3. Research Progress on the Molecular Mechanism of  
Nitrogen Absorption and Utilization in P. simonii 

Nitrogen is an essential nutrient element for plant growth and development. 
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Appropriate amount of nitrogen application (such as 5 mmol/L) can effective-
ly promote the growth of plant seedlings [7]. Nitrogen in soil exists in different 
forms, including nitrate ( 3NO− ), ammonium nitrate (NH4NO3) and ammo-
nium nitrogen ( 4NH+ ). These various forms of nitrogen will affect specific 
genes and specific interaction networks. For example, PsAAAP21 [8] and ptc- 
miR169i/b-D6PKL2, ptc-miR393a-5p-AFB2, and so on can adjust the root sys-
tem structure of P. simonii [9]. Plants absorb nitrogen through the amino trans-
porter (AMT). Chunxia Zhang’s research showed that P. simonii overexpressing 
PsAMT1.1 can show better growth traits under low-nitrogen conditions, such 
as increased plant height, stem diameter, photosynthetic rate, and total bio-
mass [10] In addition, nitrogen absorption can also induce the expression of 
PtrPAL1-5 genes [11], affecting lignin and antibiotic content, which is crucial 
for the plant’s defence mechanism. The Dof family plays an important role in 
nitrogen assimilation and utilization, highlighting its importance in regulating 
plant nitrogen metabolism [12]. At the same time, many candidate genes and 
regulatory factors related to nitrogen transport have been identified, such as 
NRT3.1, NPF5.1 and NLP8.1 [13]. These findings deepen our understanding 
of how plants use nitrogen and help improve crop breeding strategies to in-
crease crop productivity and sustainability in low-nitrogen environments (Figure 
1). 
 

 

Figure 1. The illustration of Nitrogen cycle in P. simonii. 
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4. Research Progress on the Resistance Mechanism of  
P. simonii 

P. simonii is a highly adaptable tree species that can adapt to various environ-
mental stresses, including biotic and abiotic stresses. P. simonii performs well in 
dealing with heavy metal pollution. Studies have shown that as the age of small- 
leaf poplar trees increases, it can reduce the heavy metal content in the wood 
part while increasing the accumulation of heavy metals in the leaves [14]. Not 
only does this help improve the quality of contaminated soil, it is also critical to 
ensuring the safety of timber production. In addition, C.-H. Yang [15] research 
found that the PsnPI-PLC6 gene in P. simonii under cadmium stress conditions 
will transiently up-regulate its expression. This change enhances the plant’s abil-
ity to scavenge reactive oxygen species (ROS), thus improving the overall resis-
tance of forest trees and improving forest trees’ resistance to environmental 
stress. These findings reveal the physiological mechanism of P. simonii in re-
sponse to heavy metal stress and provide a scientific basis for using this species 
for soil remediation and environmental management. 

P. simonii exhibits remarkable drought tolerance, a trait critical to its survival 
in semi-arid environments. S Meng’s [2] research found that under drought con-
ditions, P. sibiricum will increase its own and ammonium ion transporter-related 
genes (nitrogen is a key nutrient for plant growth, and the improvement of its 
absorption efficiency will help P. sibiricum to survive in a water-scarce envi-
ronment, life-sustaining activities), thereby improving the efficiency of nitrogen 
absorption. In addition, some studies have reported that the root system devel-
opment of P. simonii also shows that the application of nitrogen can improve 
the drought resistance of seedlings [16]. This fully demonstrates that, as a key 
nutrient for plant growth, nitrogen absorption efficiency is crucial to the sur-
vival of P. simonii in a water-scarce environment Shangzhu Gao [17] focused 
on PxbHLHo2 in P. simonii. This gene can positively respond to drought stress 
by regulating the opening and closing of leaf stomata and ABA signaling. Chang-
jian Du [18] confirmed molecular markers related to drought tolerance and 
identified two candidate genes and five key regulatory genes significantly re-
lated to drought stress response through homologous gene analysis. In addi-
tion, members of the MAPK signalling pathway (PsnMAPK7-2, PsnMAPK16-1, 
PsnMAPK19-2, PsnMAPK20-2) also play an important role in the drought resis-
tance process of P. minifolia [19]. Fangyuan Song [20] identified four key regu-
latory factors (PtoeIF-2B, PtoABF3, PtoPSB33, and PtoLHCA4) that play im-
portant roles under drought stress and confirmed their functions. In summary, 
P. simonii has improved its adaptability to arid environments through a variety 
of molecular mechanisms and physiological pathways. These mechanisms in-
clude but are not limited to the regulation of nitrogen metabolism and changes 
in the activity of transcription factors. These findings are crucial not only for 
understanding the survival strategies of Populus spp. but also for understanding 
the survival strategies of Populus spp. and providing valuable reference for re-
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search on drought-tolerant breeding of other plants. 
P. simonii needs to cope with a variety of temperature stresses during its growth 

and development. Research has found that certain genes in P. simonii can be ex-
pressed under temperature stress, thereby enhancing its tolerance to temperature 
changes. For example, low-temperature conditions can induce the expression of 
PsnICE1 in P. simonii, which responds to the abscisic acid response element 
(ABRE) and activates downstream stress genes that scavenge reactive oxygen spe-
cies (ROS), thus enhancing the plant’s tolerance to low temperature [21]. Under 
high-temperature conditions, the research of Jiahong Xu [22] found that lncPs3 
and eIF2D genes cooperatively up-regulate expression, which indicates that 
lncRNA also plays a key role in temperature response. At the same time, high 
temperature will also promote the expression of HSF family genes in P. simonii, 
which shows that related genes may play an important role in the adaptation 
process of seedlings to temperature [23]. The research of Nan Xu [24] further 
pointed out that high temperature will inhibit the electron transfer capacity of the 
photosynthetic system in leaves. Still, increasing CO2 concentration can alleviate 
the photosynthetic inhibition caused by high temperature. These findings deepen 
our understanding of how P. simonii adapts to different temperatures through 
molecular mechanisms and provide potential improvement strategies for future 
plant breeding. 

Salt-alkali stress is often accompanied by metabolic dysfunction. P. simonii 
triggers a complex series of molecular coping mechanisms to cope with this ad-
verse condition. Research has found that NAC transcription factors are particu-
larly significant under salt stress, and NAC42 [25], NAC86, NAC105, NAC139, 
NAC163, NAC15, and NAC149 show specific spatiotemporal patterns under salt 
stress [26]. The research of Xiaojin Lei [27] further deepened our understanding 
of this phenomenon. He clarified the specific process of NAC83 regulating down-
stream gene expression. Similarly, Wangyuting [28] also found PsnNAC090 spe-
cifically expressed in the roots of P. simonii under salt stress. In addition to 
PsnNAC090, PsPRE1 [29] [30] and PsnPLC [31] also play an important regula-
tory role in the P. simonii root system responding to stress. In addition, the ex-
pression patterns of related members of the F-box family [32], XTH family [33] 
and HD-Zip family [34] also changed significantly under salt stress. Under alka-
line stress, it is often accompanied by the specific expression of HSF family 
genes. Qing Guo’s [35] research on PsnHSF21 found that this gene is self-activa- 
ting under alkali stress. A series of other genes, such as EXPA8, EXPA4, EXPA3, 
EXPA1, EXPB3, EXP10, PME53, PME34, PME36, XTH9, XTH6, XTH23, CESA1, 
CESA3, CES9, FLA11, FLA16, FLA7 and PsnWRKY70, are also involved in the 
alkali stress response process plays a key role [36]. Finally, it is worth mention-
ing that the interaction of P. microphylla with arbuscular mycorrhizal fungi is 
also crucial for improving salt-alkali tolerance. Fengxin Dong’s research shows 
[37] that related interactions can change the expression pattern of PxNHXs, the-
reby affecting photosynthesis and ion absorption to enhance related salt-alkali to-
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lerance. If the nitrogen absorption efficiency of P. simonii is improved under sa-
line-alkali stress, the damage caused by the stress can also be reduced [38]. These 
research results jointly deepen our understanding of the stress resistance of P. 
simonii at the molecular level and provide potential molecular targets for im-
proving the tolerance of P. simonii to salt-alkali stress. 

The biotic stress resistance mechanism of P. simonii is also a research hotspot. 
Ruiqi Wang identified four transcription factors related to disease resistance, in-
cluding AtWRKY75, ANAC062, AtMYB23 and AtEBP, through the leaves of 
poplar (P. simonii × P. nigra) [39]. Further studies have shown that PsnWRKY70 
enhances poplar resistance to Rhizoctonia allochthonii by activating genes re-
lated to pathogen-related molecular patterns (PTI) and effector-induced immunity 
(ETI) [40]. Exogenous application of sorbitol can further induce PsWRKY25 and 
PsCERK1 to improve the resistance of P. simonii to diseases [41]. These findings 
demonstrate the complex disease resistance mechanism of P. microphylla and 
point out the key role of specific transcription factors in regulating plant im-
mune responses and provide relevant biotechnological means to enhance plant 
resistance to disease. 
 

 

Figure 2. Schematic abiotic stresses resistance in P. simonii. 
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In addition to the above, Yuting Wang [42] also characterized 9 PtSROs in 
Populus plants that can respond to different kinds of abiotic stress. Shenmeng 
Wang [43] found 10 YABBY family genes expressed under three abiotic stresses: 
heat, salt and osmosis in poplar (P. simonii × P. nigra). Kewei Cai [44] identified 
33 potential PsIAAs and 35 PsARFs in the entire genome of P. microphylla. 
Among them, the PsIAA7 gene is a central hub and interacts with many Aux/ 
IAA and ARF proteins. These findings indicate that these genes are not only in-
volved in specific stress responses but may also intersect to form a comprehen-
sive network to improve the overall adaptability of the plant (Figure 2). 

5. Research Progress on the Protection of Wild Poplar  
Populations of P. simonii 

Human activities are the most important factor leading to the decline and frag-
mentation of the natural population of P. simonii. The study of Zunzheng Wei 
[45] used 20 microsatellite markers to analyze the genetic variation and structure 
of 16 natural populations. The results revealed differences in the levels of genetic 
diversity among different populations, and obvious subpopulation structures 
were observed. Junjie Dai [46] and Qiaoting Zhai [47] used the MJS model to 
study P. simonii populations with different degrees of decline and explored the 
relationship between sap flow rate (SF) and the degree of decline. found that soil 
moisture conditions and decline of small-leaf poplar mainly changed the peak 
sap flow rate timing, but not its onset. The research of Jiaxuan Zhou [48] fo-
cused on the interaction between lncRNA regulatory factors and target genes 
when P. microphylla was distributed in different regions, and found the exis-
tence of different regulatory types, which may affect Populus microphylla’s abil-
ity to adapt to environmental changes. Yang Yuli’s research shows [49] that the 
random forest and multi-layer perception models can more accurately detect 
and monitor vegetation decline, providing new tools for plant ecology research. 
These studies were carried out from multiple dimensions such as genetic diver-
sity, ecological response, environmental adaptability and vegetation decline 
monitoring of P. simonii populations, and are of great significance to under-
standing and protecting the survival of this wild P. simonii in the environment. 

6. Progress in Breeding Research of P. simonii 

Research on small-leaf poplar breeding mainly focuses on shortening the breed-
ing cycle, improving plant morphological structure, improving environmental 
adaptability and stress resistance. Considering the long life cycle of forest trees, 
shortening the breeding cycle has become a key point in breeding work. As one 
of the most active points of plant growth, the terminal bud is not only a repro-
ductive organ, but also an important environment sensing organ, which directly 
impacts the overall shape and structure of the plant. In terms of research on 
terminal bud growth of P. microphylla, Wangyiran [50] and others used haploid 
breeding technology, and through morphological comparison and omics analy-
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sis, compared the terminal bud growth differences between the diploid and male 
parent of P. microphylla, which enhanced the improved understanding of the 
growth regulation mechanism of P. simonii. Polyploidization is also of great sig-
nificance in forest tree breeding and genetic improvement. Ying Zhang [51] used 
a callus regeneration strategy to construct allodiploid plants, and these plants 
showed better abiotic stress tolerance. Caixia Liu [52] induced poplar haploid 
based on anther culture method and found that the induced diploid lines showed 
high variability, and some lines showed the potential to become model plants for 
genetic and breeding research. Research by Ma Hongwen [53] showed that al-
though the stomatal density of triploid leaves is significantly smaller than that of 
diploid leaves, the chlorophyll content is significantly higher than that of diploid 
leaves, and the stomatal length and stomatal width are significantly greater than 
that of diploid leaves. It is worth mentioning that there is also research support-
ing that polyploidization will considerably reduce the viability of P. microphylla 
stamen pollen [54]. In terms of improving the stress tolerance of P. simonii, 
Xiao-Xiao Zhang [55] and Jian Wu [56] used colchicine to induce varieties with 
fast growth, easy cutting propagation, and tolerance to salt-alkali and drought. 
Wang Yang [57] introduced exogenous genes (such as betA and TaLEA) and 
suppressed expression genes (such as PsnWRKY70) to increase betaine content 
and cultivated plants with high resistance to drought and salinity. PeERF1 trans-
genic’84k’ poplar also plays a positive regulatory role in response to drought 
[58]. Regarding hybridization, research by Ding Changjun [59] showed that hy-
brid plants can protect photosynthetic organs by regulating energy dissipation 
and show superiority under salt-alkali stress. In terms of cutting propagation, it 
has been found that the rooting abilities of leafy and leafless poplar cuttings are 
different. Adventitious root formation can be promoted by applying different 
concentrations of IBA and sucrose on the top of leafless cuttings, with the com-
bination of 0.2 mg/ml IBA and 2 mg/ml sucrose having the best effect. Photo-
synthesis may also affect the formation of adventitious roots in leafy poplar cut-
tings [60]. Finally, in terms of genome-wide association mapping research, Zun- 
zheng Wei [61] and others identified three key markers closely related to mor-
phological characteristics through SSR markers, which is of great value for acce-
lerating poplar breeding of fast-growing and highly resistant varieties. At the 
same time, image technology can be used to screen resistant P. microphylla 
through leaf morphological characteristics [62], and Peng Liu [63] further ex-
plored the mechanism of P. microphylla leaf morphology and found that the 
PtoYAB11 gene promotes the unique shape of P. microphylla leaf margins. 
Wenguo Yang [64] further explored the morphogenesis mechanism of P. mi-
crophylla through specific SNPs. The above research progress shows that through 
different breeding strategies and technologies, the growth traits of P. simonii can 
be effectively improved, and its environmental adaptability and stress resistance 
can be improved, which is very important for forestry production and ecological 
protection. 
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7. The Application and Ecological Benefits of P. simonii in  
Afforestation 

P. simonii is important in afforestation, especially in soil and water conservation 
and ecological environment improvement. To maximize these benefits, P. simo-
niis are typically planted in leeward locations to reduce wind damage and pro-
mote their growth [65]. Research by Dong Cheng [66] pointed out that if P. si-
monii is mixed with plants such as Hippophae rhamnoides and A. fruticose [67], 
it can conserve water and soil more effectively and significantly improve the 
plant’s resistance to drought resistance [68]. This is because P. microphylla is 
able to transfer water from shallow soil layers to deep layers during the soil wet- 
to-dry process, which helps maintain plant growth under drought conditions 
[69]. Research by Ping Liu [70] found that in semi-arid areas, P. simonii stands 
of different ages showed different hydrodynamic characteristics. Elizabeth R. 
Rogers [71] further studied the water use efficiency of P. simonii and its hybrids 
at different ages. In terms of improving the environment, although P. simonii 
can be used for vegetation restoration [72], P. simonii is not the best choice 
compared to black locust and larch [73]. Among fire prevention strategies, 
mixed planting of poplar and fir (Abies fabri) can reduce fire risk because this 
mixed forest is relatively challenging to burn [74]. In terms of wood production, 
Wu Xinhua [75] explored the longitudinal distribution of wood quality changes 
in artificially planted P. simonii. However, in northern China, poplar windbreaks 
have generally experienced widespread decline and death, mainly due to extreme 
drought [76]. These studies show that in afforestation projects, multiple factors 
such as poplar planting location, mixed plant species, forest age, fire prevention 
needs, and soil and water conservation functions should be comprehensively con-
sidered to achieve the best ecological benefits. 

8. Research on Sex Identification of P. simonii and  
Protoplast Expression System 

In addition to the research mentioned above, research on P. microphylla also 
involves gender identification and the development of plant protoplast expres-
sion systems. Adult poplar poplars can be sexually distinguished by observing 
the seed hairs produced by female plants, which is a morphological identifica-
tion method. In the seedling stage, researchers have developed an early sex iden-
tification technology based on male-specific sequences. This technology can ac-
curately identify gender in the early stages of plant growth and is of great signi-
ficance for forest tree breeding and gender-related research [77]. In plant cell 
research, protoplast transient expression systems are a powerful tool for study-
ing gene function and cell signalling. However, for P. microphylla, there are rel-
atively few research reports in this area. Chengjun Yang’s work optimised the 
protoplast extraction method and determined an extraction system suitable for 
P. microphylla [78]. This provides a basis for further molecular biology research 
and gene function verification. 
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9. Conclusion and Outlook 

As a fast-growing deciduous tree, poplar (P. simonii) has made significant pro- 
gress in research on genomics, resistance mechanisms, population research, breed-
ing and silviculture. Future research could use genetic information to breed im-
proved varieties with enhanced adaptability and stress resistance. In addition, by 
continuing to carry out population research and ecological applications, poplar 
can be used more effectively. 
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