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(ORORN e s

Abstract

The rupture degree of a noncomplete-connected graph Gis defined by
r(G)=max{o(G-X)-|X|-7(G-X):X <V (G),»(G-X)>1}, where
a)(G — X)) is the number of components of G—X and 7(G- X) is the or-

der of the largest component of G — X . In this paper, we determine the rup-
ture degree of some Cartesian product graphs.
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1. Introduction

Let G be a connected graph with vertex set V(G) and edge set E(G). A set
X cV(G) isacut-setof G if G—X is disconnected. For a cut-set X of G, we
by ®(G-X) and 7(G-X), respectively, denote the number of components
and the order of the largest component in G — X . The score of X'is defined as
SC(X ) = a)(G -X )—|X | - T(G -X ) The rupture degree of a noncomplete- con-
nected graph Gis defined by

r(G)=max{Sc(X): X cV(G),0(G-X)>1}.

We call Xa r-set of G, if SC(X ) = r(G).

The rupture degree is well used to measure the vulnerability of graphs, for it
can measure not only the amount of work done to damage the network, but also
how badly the network is damaged. The references about this parameter see [1]
(2] [3].

For a vertex set SV (G), we by G[S] denote the subgraph of G that is
induced by S. And by N(S) denote neighbor set of S that contains vertex, not
in S, but has neighbor in S.
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Let G,,G,,---,G, be connected graphs. The Cartesian product

G, xG, x---xG, is a graph that has vertex set V (G,)xV (G,)x---xV (G,) with
two vertices U=(U;,U,,~-,U,) and V=(V,V,,---,V, ) adjacent if for exactly
one j U #V, and (U,V,) isanedgein G;. Asusual, weby P, and C, de-
note the path and the cycle on n vertices, respectively. It is well known that Car-
tesian products are highly recommended for the design of interconnection net-
works [4]. In this paper, we first determine the rupture degree for some Carte-
sian products such as P, xC_  and C_ xC, . Then, discuss the rupture degree
of grids Pr11 X Pnz XoooX F’nk , and tori Cnl Xan ><~~-><Cnk .

For terminology and notations not defined here, we refer to the book [5].

2. The Rupture Degree of P, xC, and C  xC,|

In this section, we determine the rupture degree of Cartesian product P, xC,
and C_ xC, . First, give some useful lemmas, which have been proved in [2].
Lemma 2.1. If His a spanning subgraph of G, then r(H)>r(G).
Lemma 2.2. The rupture degree of path P, andcycle C, are
0, ifnisodd; -2, ifnisodd;
- f(c)-

r(P
( -1, ifniseven. -1, ifniseven.

n

Lemma 2.3. Let Xbe a cut-set of G (: P, xC, ) If nis odd, then

a)(G—X)Smnz_m.

[EE

Proof. Suppose Sis a cut set of C,, then @(C,-S)< N~2 Notice that mC,

N

mn—-m

is a spanning subgraph of G, we have that &(G—X)<me(C,—-S)< 7

for any cut-set Xof G.

Lemma 2.4. Let Xbe a r~set of G (: C, x Cn) with m,n are odd, then

-1)(n-1

o(G-X)< w

Proof. Suppose that V(C)={u,u,--u,} and V(C))={v,V,,---,v,},
then V(G):{Wij :(ui,vj)|1s i<ml<j< n} . Let Xbe a r-set of Gand
W, = {w;,W,,---,W, } for 1<i<n. Clearly, the induced subgraphs G[W,] is
cycle with order i, named as C| . And for any cut set S, of C!,we have

a)(C,'] - S) = nT_l And call S; the optimal cut-set if equality holds. Clearly, the

optimal cut-set of C! is either {V\/il,V\Ii3,--- W, } or {WiZ!\NMVH"\Ni(nfl)} for

+ in

1<i<n. Consider Xbe a r-set of Gand mis odd, there exist C! and C!*' such
that CO(G |:V (Cr', uc,* )] -X ) < nT_l for some 7 Now, let

GlzG[V(C;UC,i”)J and G,=G-G, =P, ,xC,.Consider
o(G-X)<w(G,-X)+w(G,-X), by Lemma 2.3, we get
_ ~2)(n-1 ~1)(n-1

o(G-x)<" 1,(m-2)(n-1) (m-1)(n-1)

2 2 2
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Lemma 2.5.Let m>2 and n=>3 be positive integers. Then
r(P,xC,)2r(P,,xC,).

Proof.Let G=P,,xC , G'=P,xC .Then G-G' isa cycle. Support that
Xis a r-set of G, then X; =XV (G') and X,=XNV(G-G') are vertex
cutsetof G' and G-G’, respectively. Denote @ =w(G'-X,),
w,=0(G-G'=X,).Since r(G')2a —|X,|-7(G'-X;) and
7(G-X)27(G'-X,),wehave r(G')>w —|X,|-7(G-X).So r(G)=
o(G-X)=|X|-7(G—-X) <@+, —|X,|=|X,|-7(G-X) <r(G")+mw, - |X,|.

Notice that G-G' is a cycle and thus @, <|X,|. Thus r(G)<r(G'). This
means (P, xC,)>r(P,,,xC,).

Theorem 2.6. Let m>2 and n>3 be positive integers. Then the rupture

degree of P, xC, is

-1, if niseven;
r(P ><C)= _4+m, if miseven;
m > 32 if nis odd.
_2EM it mis odd.

Proof. Suppose V (P, )={u;,u,,---,u,} and V(C,)={Vv,V,,---,V,}, then
V(P,xC,)= {(ui WV, ) [1<i<ml<j< n} . For narrative purposes, we let
P,xC, =G and distinguish three cases to complete the proof.

Case 1. nis even.
Notice that G contains a Hamilton cycle C_,, we by Lemmas 2.1 and 2.2 get

r(G)<-1.On the other hand, let

X*:{(ui,vj)|izo(modz),j:1,3,~~-,n—1;izl(modZ),j:2,4,~--,n} for

. * n * n *
1<i<m. Clearly, o(G-X )=m5, X |:mE and 7(G-X")=1. By the
definition of rupture degree, we have r(G)Za)(G—X*)— X" —T(G—X*):—l.
Thus r(P,xC,)=-1 while nis even.

Case 2. nis odd, mis even.

First, let
X" ={(u,v,)li=0(mod2), j =1,3,--,mi =1(mod2), j =2,4,---,n—1} for

. . * mn-—-m * mn *
1<i<m. Since a)(G—X ): , [ X |=— and T(G—X >:2. Then

2 2

SC(X*):a)(G—X*)—|X*|—T<G—X*):—m+4.Now,webyshowing
SC(X)S—m+4 for any cut-set X of G to get r(G)=—m+4. Now, distin-

guish some cases to discuss.
mn

Subcase 2.1. |X|2 X =22

mn+m
. Con-

If 7(G-X)=1, by Lemma 2.3, then |X|:mn—a)(G—X)2
sider m2> 2, thus

Sc(X)=a(G-X)-|X|-7(G-X)< mn-m  mn+m

2m+2 m+4
-1=- <- .
2 2 2 2
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If T(G—X)ZZ,consider |X|Z?,wehave

S¢(X)=w(G-X)-|X|-7(G-X)< mnz‘m_%_zz_m;"{

Subcase 2.2. |X| <|X*| :?

Let A= (ui,vj)|1£j£n}, X, =ANX, X =ANX" for i=12--m
and B, ={(u,v;)l1<i<m}, Y, =BNX, Y =BNX" for j=12-n
Clearly, G[A] and G[A] are cycles with order 1 and path with order m,

respectively. We discuss by n Z% and n< g—l.

Subcase 2.2.1. n> %

Notice that G[A]UG[A,,] is a spanning subgraph of G[AUA,;] with
1<i<m-1, we can get a)(G[A UA.L]- X UX|+1)<|Xi UXi+l|—1. In fact, if
2<|X;UX;,|<n, then
o(G[AUA,]-X UX,.;)<o(G[A]-X;)+o(G[A,]-X,)-1. Thus,

o(G[AUA |- X UXpy) <X +[Xia|—1= X, U X, 4| -1.

If |X;UX;,|2n,then o(G[AUA,]-X,UX,,)<n-1.Therefore,

o(G[AUA.]- X, UX,,;)<|X;UX,,|-1. Combine this with the fact
a)(G[A UA.]-X; UX,+1) n- 1 it is clear that
a)(G[A UA.L]-X UX|+1) G[AUALL]-X; UX|+1)>I’1 |X UX|+1| for
IX;UX; ;|22 with 1<i<m- 1

Now let azz‘xuxl+ﬂ>2(n-|xiUxi+l|), M ={X; UX,, :|X;UX;,|=0}
and N ={X,UX,:|X;UX,

1} for i=1,3,---,m—1. Consider Xis a vertex

cut set of G, then |M | + | N | < E—l. Furthermore, since

G[AUAUG[AUA,]U---UG[A,,UA,] is a spanning subgraph of G with
o(G[AUAL]-X UX(,)-o(G[AUAL]-X UXi.y)2n=[X;UX;,|  for

*

X, UX,.,|> 2, we have |X =7n=|x|+|M|n+|N|(n—1)+a
And thus
a)(G—X*): m(n-1)

2
=2 o(G[AUAL]-X UXL,)

ZZ.: o(G[AUA |- X UX,,;)+|M|(n—2)+|N|(n—2)+a
> (G- X)+(|M|+|N|)(n-2)+a.

Now, we estimate the value Sc(X) in details. If |M|21,then r(G-X)=2n.
We have
If ||\/||=0,|N|21,then T(G—X)ZZH—l.Consider |N|£%—1 and m=>4.

Thus we get
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Sc(X)=w(G-X)—-|X|-7(G-X)

. m(n—l)_|N|(n_2)_a+|N|(n_1)+a—%—2n+1

m+4
I

=—%+|N|—2n+1§—2n§—mg—

If |M|=0,|N|=O,then |X|:%—a.Combine 7(G-X)>2.Wehave

SC(X):a)(G—X)—|X|—T(G—X)ﬁ@—a—?Jra—Z:—m;Af,

Subcase 2.2.2. n< %—1.

Notice that G[B UBHJ is a ladder with order 2mand

G[B,UB,]UG[B,UB,]U---UG[B,,UB,;]JUG[B,] is a spanning subgraph
of G. We similarly get

( |:B UBJ+1:| Y UYJ+1) ( |:B UBJ+1:| Y UY]+1) |Y UYJ+1

|Y Uy

while

Y; UY;

j+l
b= Z‘Yj UY,~+1\>1( |Y UYJ+1
|S| 21 and |S| =

If |S| >1, then 7(G—X)=>2m. Similarly, we get

21 for j=13,---,n—2. Now, let S= {Y UY..:

} and

j+l

) with j=1,3,---,n—2 and discuss SC( ) by

*

X

:m:|x|+|8|m+b+m—|Yn| and
2 2

o(G—x")=10)

2
= Z“’(G[Bj UB.. =Y/ UY},)
>Y o(G[B,UB,; ]-Y,UY;)+[s|(m-1)+b
i

> (G- X)+|S|(m-1)+b.
Therefore, we get

Sc(X)=w(G-X)-|X|-7(G-X)
(n-1)

<20 sjm-1)+)- {——(|S|m+b+——|Y |ﬂ

SI-Y [—2m <=3 _om
=[S]~|¥,|~ 5

7m+8<_m+4
4 2

< —

If |S| =0, we discuss by the value of |Yn | . While |Yn| > g , consider |X| < ? ,

*

then 7(G—-X)>2.Combine (X

:%:|X|+%—|Yn|+b and

. -1
a)(G—X ):m(nz )Za)(G—X)+b,wehave
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< m(n_l)—b—(m—m+|\(n|—bj—2
2 2

4
=—|Yn|—2g—m;r .

while |Yn| < %—1, we would get
Zjﬂ&_”n_za)(G [Bj U BM] =Y, UYH) > a)(G -X ) —|Yn|+% . In fact, since the

m *
optimal cut set of G[Bn] always contains Bl vertices, each vertex of Y, \ Y,

would connect at least two components in G — X . Thus, we get
m . c
> ena@(G[BUBLL =Y, UY 1) 2 0(G-X) +==|¥,| - Combine this with

=T =[X[+ 3| +b, #(6-X)22 and
-1
m(nz sza)(G[Bj UBMJ—YJ- UYJ-+1)+b,we have

*

X

Sc(X)=aw(G-X)-|X|-7(G-X)

< 2 w(G[BJ’UBj+1]—YjUYj+1>+|Yn|_g+g
j=1.3,+-,n-2
—|Yn|+b—%_2
SM—bm_m_z
2 2
__m+4
=

Case 3. m,n are both odd.
By Lemma 2.5, we get r(P,_,xC,)>r(P,xC,). Notice that n—1 is even,
3+m

weget r(G)<r(R,_,xC )=- 5

On the other hand, let
X" ={(u;v;)|i=0(mod2), j =13, n;i =1(mod2), j =2,4,-+-,n-1} for

1<i<m.Clearly, X" isacutsetof P,xC, with a)(G—X*):ng_m,
X" =m“2_1 and 7(G—X")=2. This implies that
r(G)za)(G—x*)—|x*|—f(G—x*)=—3;m.

Therefore, r(P,xC,)=- 3+m

while m,n are both odd. This completes

the proof.
Theorem 2.7. Let m,n be positive integers with n>m>3. Then the rup-

ture degree of C xC, is
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-1, both nand m are even;

4+k . . .
rmw®J=_7T” one of nand mis even, which denote by k;

_4+m+n

, both nand m are odd.

Proof. Suppose V(C,)={u,u,,---,u,} and V(C,)={v;,V,,---,V,}, then
V(CyxC,)={wy =(u,v;)[1<i<mi< j<nf. Similarly, we let C,xC,=G
and W, ={w; |1<j<n}, W, ={w;|1<i<m}. Clearly, both J,G[W, UW,,]
and UJ_G[WJ. Uw

cases to complete the proof.

MJ are spanning subgraph of G. Now, we distinguish three
Case 1. Both m and nare even.
Notice that P, xC_ is a spanning subgraph of G, by Lemma 2.1 and Theo-
rem 2.6, we have r(G)<-1.On the other hand, let
X*:{(u v)|iso(mod2),j:L3,~,n—Lisl(modzyj::ZA,-un} for

v

1<i<m. Since a)(G—X*):mE, X*|=mﬂ and T(G—X*)zl.Thus
2 2

r(G)= a)(G— X*)—|X*|—T(G— X*)=—1. Therefore, r(G)=-1.

Case 2. One of nand m is even.

Without loss generality, suppose m is even, then nis odd. We first let
X" ={(u,v,)li=0(mod2), j =13,--,mi =1(mod2), j =2,4,--,n-1} for

_mn-m

1<i<m. Clearly, a)(G—X*)_ 5 mn

:7 and T(G—X*):Z. Thus

*

X

r(G)= a)(G—X*)—|X*|—r(G —X*)z—mTM. Consider P, xC_ is aspanning

subgraph of G, by Lemmas 2.1 and 2.5, we have r(G)<— m+4 . So, we get

r(G)= —mTM while m is even and 12 is odd. Similar to the case for n is even

and m is odd, here omitted.
Case 3. Both mand nare odd.
First, let
X" ={(u,v,)i=0(mod2), j =2,4,,n-Li=1(mod2), j=13,-,n} for
(m-1)(n-)

1<i<m. Clearly, X" isa cut set of Gwith a)(G—X*)=f,

*

_mn+1

| X

and T(G— X*)z 2. Thus

r(G)2w(G-X")-|x" _dxmin

- r(G - X*) = . The following we by prov-

4+m+n

2
Claim. Let m,n be two odd numbers with 3<m<n and Sbe a r-set of

ing claim to show r(G)<-—

G(=C,xC,). Then G-S=sK,UtK, with s<T""~2

Proof. Let Sbe a r-set of Gwith 7(G—S) as small as possible. Suppose
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G,,G,,--,G, are components of G—S. We first show |Gi|£2 for 1<i<k.
If not, assume that GszF"val with |Gj|23 for 1< j<k <k, then each
G ; has at least one cut vertex (unless G ; =K, or K,).In fact, assume
G, (# K,,K,) has no cut vertex, we exchange vertices in N (G ) with vertices
in V (Gj) to keep |S| constant and find that either a)(G S —|S| G S)
would be greater or 7(G—S) would be smaller, which contradlcts to the
choose of S. So, each G; (1S j< kl) has cut vertex and suppose W, W,,--, W
are cut vertices of G;,G,,+,G , respectively. Let S'=S§ U{Wl,WZ,---,Wkl} .
Then 7(G—-S')<7(G—-S)-2. Thus we get

w(G-S' —|S’|— (G-5')

>w(G-S)+k —(|S|+k )-(r(G-S)-2)

>w(G-S)-|S|-7(G-S).

This contradicts to the choice of S. So |Gi| <2 for 1<i<k and then denote
G -S =K, UtK; . Further, it finds that there are at most one component as K,
in G[C, UC|+1] S for 1<i<m-1 and G[C UCHJ S for
1< j<n-1. Otherwise, if G[C,UC;,]-S or G[C uc ] S has at least
two components as K, , then 7(G—S)>3, contradiction. This implies that

m-1 n-1 m+n-2
2 2 2
By Lemma 2.4 and the above Claim, we get

|s|zmn—2m*”‘z_£(m—1)(”—1)_(m+n—2))

j+l

2 2 5
(mn-2m-2n+3)
=mn-m-n+2-
2
_mn+1
==
Thus, we get
r(G)=w(G-5)-|s|-7(G-5)< (m—l)z(n—l)_mn2+l_2:_4+L2+n‘

This completes the proof.

3. The Rupture Degree of Grids and Tori

Let n,n,,---,n, be positive integers. We discuss the rupture degree of grids

B, xPB, x--xP,with n;>2 andtori C, xC, x---xC, with n; >3.
Lemma 3.1. [2] Let m,n be integers with n<m. Then r(Kmyn): m-n-1.
Lemma 3.2. [1] Let m,n be integers with 1<m<n. Then

n
r(K,xK,)= m+n—mn—[—].
m
Theorem 3.3. For all positive integers n,,n,,-:-,n,, the rupture degree of gr-
ids is

r(P 5 5 ) 0, ifalln areodd,
X Xeoe X =
n 7 M -1, if somen, is even.
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Proof. Notices that P, xB, x---xPB,  contains a Hamilton path B, ., . So

by Lemmas 2.1 and 2.2, we have

I’(Pnl ><Pnz XX Pnk)S r(P

mny--Ng

)_ 0, if all n, are odd,
~|-1, if somen, is even.

On the other hand, it is well known that P, xB, xPB, x---xB, " is a bipartite
2 k

graph and thus
K oynp-n 1wy 21+ 1T all n; are odd,
P”lxpﬂzxn.xpnk S ? ? if .
K oyngne e if some n is even.
2 2

Then by Lemmas 2.1 and 3.1, we get

0, if all n, are odd,
r(P xP, x-xP, )2 . )
meoh k -1, if some n, is even.

This completes the proof.
Lemma 3.4. Let N :{nl,nz,---,nk} be integer number set with k>3 and
|ni | >3.If Sand T'and disjoint sets of Nwith SUT = N, such that

X= Hnies n<y= Hni N> then x+y-—xy _l'%“ meets maximum while

x=min{n,n,,---,n}.

Proof. Without lose generality, suppose min {nl, n,,---,N.}=n and
nn,---n =xy=a. Consider k>3 and y>Xx, we have a>x’ and y>n’.

a a

Thus a>n’x.Now,let | =n+—-a- {—Z—I , estimate the deference of
n
1 1

x+y—xy—[X] and Ifor x=[] _n>n,.
X i<

Clearly, if n, >4, we have
y a | a a
vt
X n | n X
a a a
=(n—=X)+(x=n)——| = |+| =
e (-n) 2| 2 2]

() 2] 2

2
nx n

x | o

nX—x-n
=(x-n)a————-1|-1
( l) n12X2 \J

nXx-—2x
>(x-n,) alnlzT—lj—l

>(x-n;)(n,—3)-1>0.

If =3 and x2>9, we similarly have

NN R ATRO
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3
zl[ga—6y+9j
3.3

(Zx 18y+9)>0
3 3

If =3 and 4<x<8, this means that |S| =1.Suppose x=n, andlet

31 =b>3. By simple checking, we find that the value X+ y—xy —[l—l meet
n X

S

maximum while x=n, for N={334}, {3,4,4} or {33,5}. Thus, we get

et

:(3—ns)+(”s‘3)b{3%w+{%1

n

Clearly, If n, >6, then (n, —3)[b[1— n;+3J—lj—123(bx%—lj—120. If
n3

n, =5, consider b>4, then we have

(ns—3)(b[l— n3+3j lj—122(4><%—1)—120. If n,=4, consider b>5,
n3

n +3

then (ns—3)[b[1— 53

This completes the proof.

-1|-1=> 5><£—1—120.
12

N,

By the above argument, we discuss the rupture degree of tori C, xC, x---xC,
2 Kk
Notice that cycle C

MmNy -y

by Lemmas 2.1 and 2.2, we directly get the upper bound.

is a spanning subgraph of C, xC_ x---xC, . Firstly,
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Theorem 3.5. For all integers n,,n,,---,n, >3, the rupture degree of tori is

-2, if all n, are odd,

r(C, xC_x---xC_ |<
(”1 "2 ”k) {—1, if some n, is even.

Theorem 3.6. Let n,,---,n, be integers with 3<n <n, <.--<n,. If some
n.

T(Cnl ><Cnz X"'chk)2“1+(”z”‘nk)(l—nl)_{n2'n“nk—“

1

is odd, then the rupture degree of tori is

Proof. Notice that C, xC, x---xC, is spanning subgraph of K, xK, such
that xy :l_[:(:lni with x=]] m<y=]]. _.n. By Lemmas 2.1, 3.2 and

njeS 1
Theorem 2.8, we have

r(C, xC,, x-+xC, )2r(K, xK

N X ==xNy )

(e 1) | T |

In particular, if all n; are even, C, xC, x---xC, is a spanning subgraph
of Knlnzmnk g so by Lemmas 2.1, 3.1 and Theorem 3.5, we get
Theofem 37. Ifall n, are evens, the rupture degree of tori is

r(Cnl xC, x---ank):—l.
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