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Abstract 
Let G(V, E) be a finite connected simple graph with vertex set V(G). A func-
tion ( ) { }: 1,1f V G → −  is a signed dominating function if for every vertex v 
∈ V(G), the sum of closed neighborhood weights of v is greater or equal to 1. 
The signed domination number γs(G) of G is the minimum weight of a 
signed dominating function on G. In this paper, we calculate the signed do-
mination numbers of the Cartesian product of two paths Pm and Pn for m = 6, 
7 and arbitrary n.  
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1. Introduction 

Let G be a finite simple connected graph with vertex set V(G). The neighbor-
hood of v, denoted N(v), is set {u: uv ∈ E(G)} and the closed neighborhood of v, 
denoted N[v], is set N(v) ∪ {v}. The function f is a signed dominating function if 
for every vertex v ∈ V, the closed neighborhood of v contains more vertices with 
function value 1 than with −1. The weight of f is the sum of the values of f at 
every vertex of G. The signed domination number of G, γs(G), is the minimum 
weight of a signed dominating function on G. 

In [1] [2] [3] [4], Dunbar et al. introduced this concept, in [5] Haas and Wex-
ler had found the signed domination number of P2 × Pn and P2 × Cn. In [6] Hos-
seini gave a lower and upper bound for the signed domination number for any 
graph. In [7] Hassan, Al Hassan and Mostafa had found the signed domination 
number of Pm × Pn for m = 3, 4, 5 and arbitrary n. 

We consider when we represent the Pm × Pn graph. The weight of the black 
circle is 1, and the white circles refer to the graph vertices which weight −1. 

Let f be a signed dominating function of the Pm × Pn and ( ){ }: 1A V fν ν= ∈ = , 
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( ){ }: 1V V fν ν= ∈ = − , then ( ) 2s m nP P m n B A Bγ × = ⋅ − = − . Let Kj be the jth 
column vertices, and also ( ){ }: 1j jA K fν ν= ∈ = , ( ){ }: 1j jB K fν ν= ∈ = − . 

2. Main Results 

In this paper we will show tow theorem to find the signed domination number 
of Cartesian product of Pm × Pn. 

Theorem 2.1. For n ≥ 1 then 

( )
( )
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Proof: 
Let ƒ be a signed dominating function of (P6 × Pn), then for any j were 2 ≤ j ≤ 

n − 3, then 2
1 8j

Kk j B+

= −
≤∑ . We discuss the following cases: 

Case a. |Bj| = 4: 
we notice that the first and last columns can’t include four of the B set 

vertices, but in the case 2 ≤ j ≤ n − 3 and |Bj| = 4, then the vertices (1, j), (3, j), (4, 
j), (6, j) ∈ B, and all of the j − 1th, j + 1th column’s vertices don’t contain any one 
of the B set vertices, so the (1, j + 2), (6, j + 2) vertices, then the j + 2th column 
includes three of the B set vertices at most (Figure 1). 

Case b. |Bj| = 3:  
We discuss the following cases: 
b-1. If (1, j), (3, j), (4, j) ∈ B then both of the j − 1th, j + 1th columns include at 

most one of the B set vertices, then the j + 2th column includes at most three of 
the B set vertices. 

b-2. If (1, j), (3, j), (5, j) ∈ B then the j − 1th and j + 1th columns include at 
most two of the B set vertices, and the j + 1th column includes three of the B set 
vertices. 

b-3. If (1, j), (3, j), (6, j) ∈ B then both of the j − 1th, j + 1th columns include at 
most one of the B set vertices. And the j + 2th column includes two of the B set 
vertices. 

b-4. If (1, j), (4, j), (5, j) ∈ B then only one of the j − 1th, j + 1th columns in-
clude at most one of the B set vertices, so (1, j + 2) ∈ A, then the j + 2th column 
includes at most three of the B set vertices. 
 

 
Figure 1. Case a. 
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b-5. If (1, j), (4, j), (6, j) ∈ B then both of the j − 1th, j + 1th columns include at 
most one of the B set vertices. Also (1, j + 2), (4, j + 2) and (6, j + 2) ∈ A then 
only two of the j + 2th vertices belong to B set. 

b-6. If (2, j), (3, j), (6, j) ∈ B then only one of the j − 1th, j + 1th column’s ver-
tices belong to the B set vertices, then the j + 2th column include at most four of 
the B set vertices (Figure 2). 

Case c. |Bj| = 2: 
We discuss the following cases: 
c-1. If (1, j), (3, j) ∈ B then all of the j − 1th, j + 1th, j + 2th columns include at 

most two of the B set vertices (Figure 3). 
c-2. If (1, j), (4, j) ∈ B and the j − 1th column include two of the B set vertices 

then the j + 1th column include at most one of the B set vertices, so the j + 2th 
column include at most three vertices (Figure 4). 

c-3. If (1, j), (5, j) ∈ B or (1, j), (6, j) ∈ B, then all of the j − 1th, j + 1th, j + 2th 
columns include at most two of the B set vertices (Figure 5). 

c-4. If (2, j), (3, j) ∈ B then if the j − 1th column includes two of the B set ver-
tices, then the j + 1th column includes at most one of the B set vertices, so the j + 
2th column includes at most three vertices (Figure 6). 
 

 
Figure 2. Case b. 
 

 
Figure 3. Case c-1. 

 

 
Figure 4. Case c-2. 
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c-5. If (2, j), (4, j) ∈ B then the j − 1th column includes at most three of the B 
set vertices, it is (2, j − 1), (4, j − 1), (6, j − 1) ∈ B, so the j + 1th column includes 
one of the B set vertices, also the j + 2th column includes three of the B set vertic-
es and both of the j − 2th , j + 3th columns don’t include any one of the B set ver-
tices, so the j + 4th column includes four of the B set vertices and the j − 3th col-
umn includes three of the B set vertices. then the eight columns include sixteen 
of the B set vertices. In other cases stay 2

1 8j
Kk j B+

= −
≤∑  (Figure 7). 

c-6. If (2, j), (5, j) ∈ B then all of the j − 1th, j + 1th, j + 2th columns include at 
most two of the B set vertices (Figure 8). 
 

 
Figure 5. Case c-3. 

 

 
Figure 6. Case c-4. 

 

 
Figure 7. Case c-5. 

 

 
Figure 8. Case c-6. 
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c-7. If (3, j), (4, j) ∈ B then all of the j − 1th, j + 1th, j + 2th columns include at 
most two of the B set vertices (Figure 9). 

Case d. |Bj| = 1: 
We discuss the following cases: 
d-1. If (1, j) ∈ B or (3, j) ∈ B or (4, j) ∈ B or (6, j) ∈ B then the j − 1th column 

includes at most three of the B set vertices also both of the j + 1th, j + 2th columns 
include at most two of the B set vertices (Figure 10). 

d-2. If (2, j) ∈ B or (5, j) ∈ B then both of the j − 1th, j + 1th columns includes 
at most three of the B set vertices, and the j + 2th column includes at most one of 
the B set vertices (Figure 11). 

From the previous cases we conclude ( )6 2s nP P nγ × ≥ . 
To find the upper bound of the signed domination number of (P6 × Pn) graph, 

let’s define (Figure 12). 
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Figure 9. Case c-7. 

 

 
Figure 10. Case d-1. 

 

 
Figure 11. Case d-2. 
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Figure 12. B set. 

 
Case n ≡ 1 (mod 5). 
If B is the previously defined set and represents the vertices have the weight 

−1, then every one of the P6 × Pn vertices achieves the signed dominating func-
tion, and |B| ≥ 2n, then: ( ) ( )6 6 2 2 2s nP P n n nγ × ≤ − = . Consequently:  

( ) ( )6 2 : 1 mod 5s nP P n nγ × = ≡  (Figure 13). 
Case n ≡ 2 (mod 5). 
In this case, we delete one of the two vertices (3, n) or (4, n) from the pre-

viously defined set B vertices, then the signed domination number will increase 
by 2 than the signed domination number in case of n ≡ 1 (mod 5), and ƒ remains 
a signed dominating function of the graph. Consequently:  

( ) ( )6 2 2 : 2 mod5s nP P n nγ × = + ≡  (Figure 14). 
Case n ≡ 0, 3, 4 (mod 5). 
In this case we delete the B set vertices in the last column, then the signed 

domination number will increase by 4 than signed domination number in case 
of n ≡ 1 (mod 5). And ƒ remains a signed dominating function of the graph. 

Consequently: ( ) ( )6 2 4 : 0,3,4 mod5nP P n nγ × = + ≡  (Figure 15). 
Lemma 2.1. 
Let f be a signed domination function of (P7 × Pn), and B the graph vertices set 

which having the weight −1, Then for any j were 1 ≤ j ≤ n − 1, then 1 5j
Kk j B+

=
≤∑ . 

Except the following cases: 
(3, j), (5, j) ∈ B, (1, j), (3, j), (5, j) ∈ B, (2, j), (3, j), (5, j) ∈ B or (3, j), (5, j), (7, 

j) ∈ B. Then 1 6j
Kk j B+

=
≤∑  and in this case |Bj+2| + |Bj+3| ≤ 5. 

Proof: 
For any j were 1 ≤ j ≤ n then |Bj| ≤ 4. 
Case a. |Bj| = 4: 
The j + 1th column includes at most one of the B set vertices, except case (1, j), 

(3, j), (5, j), (7, j) ∈ B. then the j + 1th column includes two of the B set vertices 
(Figure 16). 

Case b. |Bj| = 3: 
The j + 1th column includes at most two vertices except in the following cases: 
(1, j), (3, j), (5, j) ∈ B, (2, j), (4, j), (6, j) ∈ B, (3, j), (5, j), (7, j) ∈ B. Then |Bj+1| 

= 3 (Figure 17). 
Case c. |Bj| = 2: 
The j + 1th column includes at most three vertices, except in case (3, j), (5, j) ∈ 

B, then the j + 1th column includes four of the B set vertices (Figure 18). 
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Figure 13. Case n ≡ 1 (mod 5). 

 

 
Figure 14. Case n ≡ 2 (mod 5). 

 

 
Figure 15. Case a. 
 

 
Figure 16. Case a. 

 

 
Figure 17. Case b. 
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Figure 18. Case c. 
 

In case |Bj| = 1 or |Bj| = 0 it’s proofed easily because |Bj+1| ≤ 4. 
Lemma 2.2. 
Let ƒ be a signed domination function of (P7 × Pn) and B the graph vertices set 

which having the weight −1, then |B1| + |B2| + |B3| ≤ 6. Except for a case (2, 3), 
(3, 3), (6, 3) ∈ B. Then |B1| + |B2| + |B3| ≤ 7. In this case |B4| = 1. 

Proof: 
Case a. |B2| = 3: 
If (1, 3), (3, 3), (5, 3) ∈ B or (2, 3), (4, 3), (6, 3) ∈ B then the second column 

include three vertices of the B set vertices, and the first column doesn’t include 
any one of the B set vertices (Figure 19). 

Case b. |B2| = 2: 
If (1, 3), (3, 3), (7, 3) ∈ B or (1, 3), (4, 3), (5, 3) ∈ B or (1, 3), (4, 3), (6, 3) ∈ B, 

then the second column include two vertices of the B set vertices, and the first 
column doesn’t include any one of the B set vertices. 

If (1, 3), (3, 3), (4, 3) ∈ B or (1, 3), (3, 3), (6, 3) ∈ B or (1, 3), (5, 3), (6, 3) ∈ B 
or (2, 3), (3, 3), (5, 3) ∈ B or (2, 3), (4, 3), (5, 3) ∈ B, then the second column in-
clude two vertices of the B set vertices, and the first column include one of the B 
set vertices. 

If (2, 3), (3, 3), (6, 3) ∈ B, then the second column include two vertices of the 
B set vertices, and the first column include two vertices of the B set vertices. In 
this case the fourth column at most include one of the B set vertices (Figure 20). 

Case b. |B2| = 1: 
If (1, 3), (4, 3), (7, 3) ∈ B, then the second column include one of the B set 

vertices, and the first column include one of the B set vertices (Figure 21). 
Remark 2.1. |Bn−2| + |Bn−1| + |Bn| ≤ 6. Except for a case (2, n − 2), (3, n − 2), (6, 

n − 2) ∈ B. Then |Bn−2| + |Bn−1| + |Bn| ≤ 7. In this case |Bn−3| = 1, and prove as in 
the lemma (2.2.) 

Theorem 2.2. Let n be a positive integer 

If n ≡ 0, 2 (mod 5), then ( )7
11 6

5s n
nP Pγ × = + ; 

If n ≡ 1, 3 (mod 5), then ( )7
11 7

5s n
nP Pγ × = + ; 
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Figure 19. Case b. 

 

 
Figure 20. Case b. 
 

 
Figure 21. Case c. 

 

If n ≡ 4 (mod 5), then ( )7
11 8

5s n
nP Pγ × = + . 

Proof: 
Case n ≡ 0 (mod 5). 
Let ƒ be a signed domination function of the P7 × Pn. And B the graph vertices 

set which having the weight −1. Then for any j were 1 ≤ j ≤ n − 3 then  
3

1 12j
Kk j B+

= −
≤∑ . 

Case a. |Bj| = 4: 
Then we discuss the following cases: 
a-1. If (2, j), (3, j), (5, j), (6, j) ∈ B then both of the j − 1th, j + 1th columns don’t 

include any one of the B set vertices, so |Bj−1| + |Bj| + |Bj+1| ≤ 4. And according to 
lema1 then |Bj+2| + |Bj+3| ≤ 6. 

a-2. If (1, j), (3, j), (4, j), (6, j) ∈ B or (1, j), (3, j), (4, j), (7, j)∈B or (1, j), (3, j), 
(5, j), (6, j) ∈ B. Then one of the j − 1th or j + 1th column includes one of the B set 
vertices, as |Bj+2| + |Bj+3| ≤ 6. 

a-3. If (1, j), (3, j), (5, j), (7, j) ∈ B then both of the j − 1th, j + 1th columns in-
clude two of the B set vertices, as |Bj+2| + |Bj+3| ≤ 6 (Figure 22). 

Case b. |Bj| = 3: 
We discuss the following cases: 

https://doi.org/10.4236/ojdm.2020.104010


M. Hassan et al. 
 

 

DOI: 10.4236/ojdm.2020.104010 105 Open Journal of Discrete Mathematics 
 

 
Figure 22. Case a. 

 
b-1. If (1, j), (4, j), (7, j) ∈ B then at most one of the j − 1th columns vertices 

and also at most one of the j + 1th vertices belongs to the B set vertices. Then the 
number of the vertices from the B set in the five successive columns remains less 
or equal to 12 (Figure 23). 

b-2. If (1, j), (3, j), (4, j) ∈ B or (1, j), (4, j), (5, j) ∈ B or (1, j), (4, j), (6, j) ∈ B 
or (1, j), (5, j), (6, j) ∈ B or (2, j), (3, j), (5 , j) ∈ B or (2, j), (3, j), (6, j) ∈ B or (2, 
j), (4, j), (5, j) ∈ B. then at most two of the j − 1th columns vertices and also at 
most one of the j + 1th vertices belongs to the B set vertices. Then the number of 
the vertices from the B set in the five successive columns remains less or equal to 
12 (Figure 24). 

b-3. If (2, j), (4, j), (6, j) ∈ B then at most one of the two vertices (2, j − 1), (2, j 
+ 1) and one of the two vertices (4, j − 1), (4, j + 1), And one of the two vertices 
(6, j − 1), (6, j + 1) may be of the B set vertices. Then the number of the vertices 
from the B set in the five successive columns remains less or equal to 12 (Figure 
25). 

b-4. If (1, j), (3, j), (5, j) ∈ B then the j − 1th column includes at most three of 
the B set vertices. In case |Bj−1| = 3. Then (3, j − 1), (5, j − 1), (7, j − 1) ∈ B. so (6, 
j + 1), (6, j + 2) ∈ B. Thus it remains in the j + 2th column three successive ver-
tices include at most two of the B set vertices, so the j + 3th column includes at 
most two of the B set vertices (Figure 26). 

b-5. If (1, j), (3, j), (7, j) ∈ B then both of the j − 1th, j + 1th columns include at 
most two of the B set vertices. 

b-5-1. If (3, j − 1), (5, j − 1) ∈ B then (4, j + 1), (5, j + 1)∈ B and (2, j + 2), (6, j 
+ 2) ∈ B then three of the j + 3th column vertices belongs to the B set vertices. 

b-5-2. If (4, j − 1), (5, j − 1) ∈ B then (3, j + 1), (5, j + 1) ∈ B, and (2, j + 2), (5, 
j + 2) ∈ B or (2, j + 2), (6, j + 2) ∈ B, then at most three of the j + 3th column ver-
tices belong to the B set vertices (Figure 27). 

b-6. If (1, j), (3, j), (6, j) ∈ B then the j − 1th column includes at most two of 
the B set vertices, in this case the j + 1th column includes at most two of the B set 
vertices, and the j + 2th column includes at most three vertices and the j + 3th 
column includes at most two vertices of the B set vertices (Figure 28). 

Case c. |Bj| = 2: 
c-1. If (1, j), (4, j) ∈ B or (1, j), (7, j) ∈ B then both of the j − 1th, j + 1th col-

umns include at most two of the B set vertices, then the j − 1th, jth, j + 1th columns  

https://doi.org/10.4236/ojdm.2020.104010


M. Hassan et al. 
 

 

DOI: 10.4236/ojdm.2020.104010 106 Open Journal of Discrete Mathematics 
 

 
Figure 23. Case b-1. 

 

 
Figure 24. Case b-2. 
 

 
Figure 25. Case b-3. 

 

 
Figure 26. Case b-4. 

 

 
Figure 27. Case b-5. 
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Figure 28. Case b-6. 

 
include at most six of the B set vertices, as any two columns include at most six 
vertices (Figure 29). 

c-2. If (1, j), (3, j) ∈ B then the j − 1th column includes at most three vertices, 
because one of the two vertices (3, j − 1) ∈ B or (4, j − 1) ∈ B and either the two 
vertices (5, j − 1) and (6, j − 1) or (5, j − 1) and (7, j − 1) belong to the B set ver-
tices. 

c-2-1. If (3, j − 1) ∈ B the j + 1th column includes at most three of the B set 
vertices, in this case the j + 2th column includes at most one of the B set vertices, 
and the j + 3th column includes at most three vertices. Or the j + 2th column in-
cludes two of the B set vertices and the j + 3th column includes at most three ver-
tices. 

c-2-2. If (4, j − 1) ∈ B then the j + 1th column includes at most three of the B 
set vertices, in this case (3, j + 1), (5, j + 1), (6, j + 1) ∈ B and (2, j + 2) ∈ B, so (2, 
j + 3), (4, j + 3), (5, j + 3), (7, j + 3) ∈ B, then the j − 2th column includes at most 
one of the B set vertices, then 2

2 12j
Kk j B+

= −
≤∑ . Also the j + 4th column doesn’t 

include any one of the B set vertices, so 4 12j
Kk j B+

=
≤∑ . And according to lem-

ma 2-1 note |Bj+5| + |Bj+6| ≤ 6, so |Bj+7| ≤ 6. Then every ten successive columns in-
clude at most twenty four of the B set vertices (Figure 30). 

c-3. If (1, j), (5, j) ∈ B then the j − 1th column includes at most three of the B 
set vertices, so the j + 1th and j + 2th columns includes at most two of the B set 
vertices, and the j + 3th column includes at most three vertices (Figure 31). 

c-4. If (1, j), (6, j) ∈ B then the j − 1th column includes at most three vertices, 
in this case the j + 1th column includes at most two of the B set vertices, also the j 
+ 2th column includes three of the B set vertices, and the j + 3th column includes 
at most two vertices (Figure 32). 

c-5. If (2, j), (3, j) ∈ B then the j − 1th column includes at most three of the B 
set vertices, then the j + 1th column includes two of the B set vertices which are 
(5, j + 1), (6, j + 1), also (1, j + 2), (3, j + 2), (4, j + 2)∈ B, and the j + 3th column 
includes only one of the B set vertices (Figure 33). 

c-6. If (2, j), (4, j) ∈ B then the j − 1th column includes at most three of the B 
set vertices, so the j + 1th column includes at most two of the B set vertices, in 
this case the j + 2th column includes at most three of the B set vertices, and the j 
+ 3th column includes at most two vertices (Figure 34). 

c-7. If (2, j), (5, j) ∈ B then the j − 1th column includes at most three of the B 
set vertices, and the j + 1th column includes two of the B set vertices, then the j + 
2th, j + 3th columns include at most five of the B set vertices (Figure 35). 
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Figure 29. Case c-1. 
 

 
Figure 30. Case c-2. 

 

 
Figure 31. Case c-3. 

 

 
Figure 32. Case c-4. 

 

 
Figure 33. Case c-5. 

 
c-8. If (2, j), (6, j) ∈ B then both of the j − 1th, j + 1th columns include at most 

three of the B set vertices, so the j + 2th column includes at most one of the B set 
vertices, and the j + 3th column includes at most three vertices (Figure 36). 
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Figure 34. Case c-6. 
 

 
Figure 35. Case c-7. 
 

 
Figure 36. Case c-8. 

 
c-9. If (3, j), (4, j) ∈ B then the j − 1th column includes at most three of the B 

set vertices, then the j + 1th column includes at most three of the B set vertices, 
then the j + 2th column includes only one of the B set vertices, and the j + 3th 
column includes at most three vertices (Figure 37). 

c-10. If (3, j), (5, j) ∈ B then the j − 1th column includes at most four of the B 
set vertices, so the j + 1th column includes at most two vertices, then the j + 2th 
column includes at most three of the B set vertices, and the j + 3th column in-
cludes at most one vertex (Figure 38). 

Case d. |Bj| = 1: 
In this case the j + 1th, j + 2th columns include at most five of the B set vertices, 

so if the j + 3th, j + 4th columns include six of the B set vertices, then the number 
of the vertices in the five columns is less or equal to 12 (Figure 39). 

We note from all the previous cases 
12

5
B n
≤ . Then ( )7s nP Pγ × ≥

12 12 17
5 5
n nn   = 

 
− . 

To find the upper bound of the signed domination number of (P7 × Pn) graph, 
let’s define (Figure 40). 
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Figure 37. Case c-9. 
 

 
Figure 38. Case c-10. 

 

 
Figure 39. Case d. 

 

 
Figure 40. Case B. 
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j j

jj j j n
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+ + +

+ + +

+

  ≤ ≤ 

+

+ +

 
− ≤ ≤   
− ≤ ≤   

− ≤ ≤   
−  ≤ ≤ 


+   









 

If B the graph vertices set which having the weight −1, then every one of the P7 

× Pn graph vertices achieves the signed domination function and 
12

5
B n ≥   

. 
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According to lemma 2-2 we deleted the vertex (4, 1) from the previously de-

fined set B vertices in all cases, then ( )7
11 2

5s n
nP Pγ  × ≥ +  

. 

Case n ≡ 0, 2 (mod 5). 
According to lemma 2-2, then in case n ≡ 0 (mod 5), we delete the vertices (3, 

n), (6, n), so in case n ≡ 2 (mod 5), we delete the vertex (4, n). Then the signed 
domination number will increase by 4. 

Consequently: ( ) ( )7 2 4 6 : 0,2 mod
5 5

511 11
s nP n nP nγ    × = + + = + ≡      

 

(Figure 41). 
Case n ≡ 1, 3 (mod 5). 
When we add one column on case n ≡ 0 (mod 5), note that the number of ver-

tices will increase by 7, and the number of set B vertices will increase by 2, in this 
case 

( ) ( ) ( )7 2 7 7 : 1 mod
11

5
1 11

5 5s nP P
n

nnγ  × = + +
− 

 
 

= + ≡  
. 

When we add three columns on case n ≡ 0 (mod 5), note that the number of 
vertices will increase by 21, and the number of set B vertices will increase by 5, in 
this case 

( ) ( ) ( )7 2 21 2 5 7 : 3
11 3 11

5 5
mod 5s n

n
P P nnγ  × = + + −

− 
  × = + ≡   

. 

Consequently: ( ) ( )7 7 : 1,3 mod11
5

5s n
nP P nγ  × ≥ + ≡  

. (Figure 42) 

Case n ≡ 4 (mod 5). 
When we add four column on case n ≡ 0 (mod 5), note that the number of 

vertices will increase by 28, and the number of set B vertices will increase by 9, in 
this case (Figure 43) 

( ) ( ) ( )7 2 28 2 7 8 : 4
11 4 11

5 5
mod 5s n

n
P P nnγ  × = + + −

− 
  × = + ≡   

. 

 

 
Figure 41. Case n ≡ 0, 2 (mode 5). 

 

 
Figure 42. Case n ≡ 1, 3 (mode 5). 
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Figure 43. Case n ≡ 4 (mode 5). 

3. Conclusion 

In this paper, we studied the signed domination numbers of the Cartesian prod-
uct of two paths Pm and Pn for m = 6, 7 and arbitrary n. We will work to find the 
signed domination numbers of the Cartesian product of two paths Pm and Pn for 
arbitraries m and n, and special graphs.  
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