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Abstract 
This study used a Polyindole in combination with TiO2 nanocatalyst as an ef-
ficient heterogeneous catalyst to carry out a multi-component Hantzsch reac-
tion involving different aromatic aldehydes with methyl acetoacetate, and 
aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent 
free condition at ambient temperature. A broad range of aldehydes and 
methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with 
high level of functional group tolerance can be used to provide the desired 
products possessing relevant medicinal moiety in high yields. This technology 
has prospective advantages over current protocols, including the utilization of 
a cheap, stable, recyclable, and safe catalyst, quicker reaction times with 
higher yields and simple product isolation. 
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1. Introduction 

1,4-dihydropyridine scaffolds represents heterocyclic unit of remarkable bio-
logical and pharmacological efficiency [1]. More than a hundred years ago, 
1,4-dihydropyridine derivatives was reported by Arthur Hantzsch [2]. These are 
important precursors due to their pharmacological and biological activities such 
as antihypertensive [3], anti-anginal and as calcium channel blockers [4] [5] [6] 
[7] [8] for the treatment of cardiovascular diseases [9]. A number of DHP deriva-
tives are employed as potential drug candidates for the treatment of congestive 
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heart failure, and also acts as NADH mimics for the reduction of carbonyl com-
pounds and their derivatives. Apart from these 1,4-DHP also possess many more 
pharmacological activities such as anti-bacterial, anti-cancer, anti-microbial, anti- 
tubercular, antioxidant agents, antiulcer, CFTR, antimalarial and HIV-I protease 
inhibitory and many more (Scheme 1) [10] [11] [12]. 

The biological activity of 1,4-dihydropyridine derivatives in numerous sectors 
has recently gained significant attention, which have persuaded scientists to de-
velop novel new processes for synthesizing them. 1,4-dihydropyridine generally 
synthesized by condensation of aldehydes, β-ketoester and ammonia or ammo-
nium acetate. The number of attempts has been taken to improve the yield and 
selectivity of the product under milder condition of this Hantzsch reaction using 
different alternate process in the literature. All of these aforesaid reaction re-
quired one of the following conditions like microwave [13] [14] [15], ionic liq-
uids [16] and higher temperature [17] [18] [19], ultrasound irradiation, catalyst 
or reagents like TMSl [20], Molecular Iodine [21], Yb(OTf)3 [22], FeCl3 [23], 
Ceric Ammonium Nitrate [24], Silica gel supported sodium bisulfate [25] and 
Scandium (III) triflate [26]. However, all of these methods have some drawbacks, 
such as the use of hazardous solvents, extended heating, tiresome work-up, 
by-products, and limited yield. 

In a recent year, Nano catalytic approach for the synthesis of 1,4-dihydropyridine 
is more advantageous over conventional method due to its enormous activity 
and selectivity. This methodology becomes green, non-toxic and eco-friendly 
process. To this content, Safari et al. in 2011, introduce Cobalt nanoparticles 
catalysed synthesis of 1,4-dihydropyridine [27]. In 2012, Tajbakhsh et al. and 
co-workers reported that TiO2 has been used as a catalyst in the production of 
Dihydropyridine [28]. In the same year Yang et al. synthesiszed the 1,4-dihydro- 
pyridine using magnetic nanocrystalline Fe3O4 as catalyst [29]. Further, synthesis 
of 1,4-dihydropyridine derivatives via one pot condensation of dimedone or  
 

 
Scheme 1. Some commercial drugs containing the 1,4-dihydropyridine core moieties. 
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4-hydroxycumarine, aldehydes and ammonium acetate using Fe3O4@SiO2 nano- 
particles as a heterogeneous catalyst in 2014 by Dam et al. [30]. Alinezhad et al. 
reported synthesis of 1,4-dihydropyridine using Cu-doped ZnO nanocrystalline 
powder as a heterogeneous catalyst [31]. Bajajand and co-workers report CuO 
nanoflakes for the synthesis of 1,4-dihydropyridine [32]. Dehghanizadeh et al. 
used zinc oxide nanoparticles as heterogeneous nanocatalyst for the synthesis of 
1,4-dihydropyridine [33]. A Nickel oxide loaded on Zirconia (NiO/ZrO2) as a 
nano catalyst for synthesis of 1,4-dihydropyridine reported by Bhaskaruni et al. 
in 2019 [34]. Later, Cahyana et al. introduce copper iodide nanoparticles for 
synthesis of 1,4-dihydropyridine [35]. However, all above methods has signifi-
cant drawbacks, such as a longer reaction duration, low yield, lack of recyclabil-
ity, and a challenging isolation process of the desired products. These challenges 
encourage researcher to developed new and green synthetic approach to over-
come the disadvantages associated to Hantzsch condensation. In this context, 
polymer supported titanium dioxide (Polyindole TiO2) nanocatalytic systems 
have been developed as green, eco-friendly and reusable nanocatalyst to synthe-
sized 1,4-dihydropyridine. 

The current study describes the synthesis of polyindole-TiO2 nanocomposites 
and their use as a recyclable and possible catalyst for the single-pot, multicom-
ponent synthesis of dihydropyridine without the need of solvents. The synthesis 
of 1,4-dihydropyridines derivatives derived from raw materials including alde-
hyde, methyl acetoacetate and ammonia solution under solvent free mild green 
condition. 

2. Results and Discussion 

TiO2 nanoparticle FTIR spectra are shown in Figure 1(a). The O-H bond’s 
stretching vibration shows band at ~3400 cm−1, and the bending vibration of 
O-H group shows peak at 1700 cm−1. The peaks identified at 461 and 501.5 cm−1 
is due to the stretching and bending vibrations of Ti-O-Ti group. Broad band in 
the polyindole-TiO2 FTIR spectrum at about 3600 cm−1 suggests the presence of 
-NH bonds (Figure 1(b)). The nitrogen of the indole is not the polymerization 
site, as indicated by the band at 1570 cm−1, which is caused by stretching and 
deformation vibrations of the -NH bond. The benzene ring is not impacted dur-
ing the polymerization of indole, according to the sharp band at 740 cm−1. The 
stretching mode of the benzene ring, which is represented by the peaks at 1454 
cm−1 and 1610 cm−1, indicates that the benzene ring was not the site of polym-
erization. This indicates that polymerization occurred.  

TiO2 and polyindole-TiO2 nanocomposites’ surface morphologies were ex-
amined using scanning electron microscopy (SEM), and they are depicted in 
Figure 2(a) and Figure 2(b), respectively. As shown in the SEM image, the TiO2 
nanoparticles are heavily aggregated and have a spherical morphology. Figure 
2(a). While the TiO2 nanoparticles, which range in size from 40 to 60 nm, are 
dispersed in clusters formed by the accumulation of Polyindole particles. By  
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Figure 1. FT-IR spectra of (a) TiO2 & (b) Polyindole TiO2 (Pin-TiO2) nanoparticles. 

 

 
Figure 2. SEM images of (a) TiO2 & (b) Polyindole TiO2 (Pin-TiO2) nanoparticles. 

 
generating spheres, this functions as a soft template. According to SEM findings, 
the Polyindole matrix contains nanostructured TiO2 particles that are evenly 
dispersed. 

The crystal structure of Polyindole (PIn), TiO2 and Polyindole-TiO2 (PIn-TiO2) 
are characterized by XRD. The X-ray diffraction pattern for the synthesized 
nano TiO2 is shown in Figure 3(a). The diffraction peak appears at 2θ values 
with 27.19˚, 35.89˚, 39.56˚, 40.99˚, 44.45˚ and 54.18˚ correlates the crystal planes 
of (110), (101), (200), (111), (210) and (211) which is matched and confirmed 
with the standard reference XRD pattern of TiO2 (JCPDS Card No.21-1276). The 
high intense peak of the XRD pattern at 2θ value of 27.19 confirmed the pre-
pared TiO2 nanoparticle correlates the rutile phase and the preferred orientation 
plane was (110). The X-ray diffraction pattern of synthesized polyindole (PIn) as 
presented in Figure 3(b) shows broad peaks at 19.54 and 25.58˚. The presence of  
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Figure 3. XRD spectra of (a) TiO2 (b) Polyindole (c) Polyindole-TiO2 nanoparticles. 

 
these broad peaks confirms the polymerization of indole, and diffraction peak at 
25.58˚ validates the partial crystalline nature of PIn. Strong diffraction peak at 
27.19˚ in the XRD pattern of the polyindole-TiO2 nanocomposites shown in 
Figure 3(c) indicate that TiO2 is present in the nanocomposite in rutile phase. 

In these efforts to develop an efficient & environmentally benign methodology 
for the synthesis of dihydropyridine, we initiated our studies by subjecting cata-
lytic amount of polyindole TiO2 to the mixture of benzaldehyde, methyl aceto-
acetate and ammonia solution (25%) in solvent free condition at room tempera-
ture. Unfortunately, the resulted yield was very poor even after 24 h of stirring. 
To increase the yield of the reaction, various solvent systems were screened at 
50˚C temperature. We pleased to see that the synthesis of DHP was effective 
catalyzed by polyindole TiO2 in solvent free condition at elevated temperature 
leading to high yield of product. The results are summarized in Table 1. It is 
evident that the best result was obtained by the application of 5 mol% of Poly-
indole TiO2 in solvent free condition at 50˚C. Higher and lower amount of cata-
lyst subsequently reduce the yield of the product (Table 1, entry 5). In typical 
procedure 1 mmole of aldehyde, 2 mmole of methyl acetoacetate and 2 mmole of 
ammonia solution were mixed in solvent free condition in presence of 5 mole % 
of polyindole TiO2 and reaction mixture was stirred for 1 to 2 h at 50. After 
workup it produced the corresponding DHP’s with good yield. 

After having optimization condition in our hand, we further explore the sub-
strate scope in Figure 4. Electron rich and electron deficient aromatic aldehyde as 
well as heterocyclic aldehyde work well with our protocol. First of all, aromatic 
aldehyde possessing an array of either electron donating or withdrawing substitu-
ents at both the p and m-position delivered the desired 1, 4-dihydropyridines 
products (2B, 2D-E, 2G, 2H) in excellent yields. Further, the sterically con-
gested o-substituted aldehyde substrate is also suitable to produce the desired 
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1,4-dihydropyridines products (2C) in good yield. Interestingly, polyaromatic 
substrates like, [1,1’-biphenyl]-4-carbaldehyde were equally competent in fur-
nishing the product 2J in excellent yield. Pleasingly, the efficiency of this reac-
tion was not suppressed when heteroaromatic substrates such as thiophene-2- 
carbaldehyde and 1H-pyrrole-2-carbaldehyde was employed. Notably, the Poly-
indole TiO2 offers much easier recyclability than the homogeneous one (Table 2). 
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Figure 4. Substrate scope for the synthesis of 1,4-dihydropyridines derivativesa. aReaction conditions: 
Aromatic aldehyde (1 mmol), methyl acetoacetate (2 mmol) and aq. ammonia solution (2 mmol), 50˚C, 1 
- 2 h.  

 

Plausible General Mechanism:  
As reported in the literature, [36] the plausible mechanism for nanocatalyzed 

synthesis of 1,4-dihydropyridine contains the activation of aldehydes and diketones  
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Table 1. Optimization of reaction conditions for the synthesis of 1,4-dihydropyridines. 

Entry Catalyst (wt.%) Solvent Temp ˚C Time (h) Yield (%)a 

1 5 Neat RT 24 35 

2 5 MeOH RT 24 25 

3 5 EtOH RT 24 30 

4 5 THF RT 4 10 

5 5 Neat 50 1.5 95 

6 0 Neat 50 6.5 70 

7 10 Neat 50 1.5 83 

8 15 Neat 50 1.5 70 

9 5 MeOH 50 4.0 75 

10 5 EtOH 50 4.5 69 

11 5 IPA 50 6 70 

aIsolated yield. 
 
Table 2. Catalyst recovery study data under optimized condition. 

Entry Time (h) Yield (%)a 

1st cycle 1.5 98 

2nd cycle 1.5 96 

3rd cycle 2.0 93 

4th cycle 2.5 90 

5th cycle 3.5 89 

6th cycle 5.0 85 

aIsolated yield. 
 
by nanoparticles followed by nucleophilic attack to form intermediate A. Inter-
mediate A was further activated by the nanoparticle and facilitated the nucleo-
philic attack by intermediate B to form intermediate C. After following the in-
tra-molecular cyclization to generate intermediate D, which was further depro-
tonated to form intermediate E, and finally the resulting 1,4-dihydropyridine (F) 
is formed after dehydration of intermediate E (Scheme 2). 

3. Experimental Method 

General experimental description: 
Chemicals, reagents and solvents were obtained from Sigma Aldrich Com-

pany. All compounds were identified by their physical and spectroscopic data. 
The nanomaterial has been characterized by Fourier transform infrared analysis 
galaxy series FT-IR 5000 spectrometer, scanning electron microscopy (SEM) by 
MIRA III from TESCAN Company and Philips XL30, X-ray diffraction by JEOL 
JDX-8030 (30 kV, 20 mA), On a Brucker spectrophotometer (400 MHz) in  
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Scheme 2. Plausible mechanism for synthesis of 1, 4-dihydropyridine. 
 
DMSO-d6 or CDCl3. All the 1H and 13C{1H} NMR spectra were referenced inter-
nally to the residual solvent signals. On an Agilent model, the mass spectra were 
captured. Melting points were determined uncorrected utilizing capillary tubes 
on an electrothermal digital instrument. 

Preparation of TiO2 Nanoparticles: 
Under a nitrogen atmosphere, titanium tetrachloride (TiCl4) was added drop 

by drop to ethanol and water (1:1) to create TiO2 nanoparticles. At room tem-
perature, the reaction mixture was agitated for 12 hours to produce a yellow- 
colored solution of TiO2 nanoparticles. After being obtained, the nanoparticles 
were filtered, dried at 80˚C in an oven, and then calcined for an hour at 350˚C in 
a furnace. 

Preparation of Polyindole-TiO2 Nanoparticles: 
The monomer indole (1 mmol) and a 5% aq hydrochloric acid solution were 

added to a round-bottom flask and warmed to 40˚C to form a clear solution. To 
this clear solution, TiO2 nanoparticles were added, polymerization reaction was 
allowed to proceed for two hours. Under constant stirring, ammonium persul-
fate (1 mmol) solution in 10 ml de-ionised water was added dropwise to the 
monomer solution containing TiO2 at 0˚C - 5˚C. The reaction mixture was al-
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lowed to stand for 12 hours at room temperature to form greenish-black pre-
cipitation of polymerized material, which was filtered and washed with cold wa-
ter. The isolated polyindole-TiO2 nanoparticles were dried under vacuum at 
70˚C and characterized by FTIR, XRD, and SEM. 

General procedure for the synthesis of 1,4-dihydropyridine: 
A mixture of aromatic aldehyde (1 mmol), methyl acetoacetate (2 mmol), and 

aq. ammonia solution (2 mmol) was mixed at room temperature. The mixture 
was stirred for 5 minutes. Polyindole-TiO2 Nano-PiN.TiO2 (5%W) as a catalyst 
was then added, and the reaction mixture was stirred magnetically at 50˚C. The 
progress and completion of the reaction were monitored by TLC (n-hexane/ethyl 
acetate: 3:1 v/v) during appropriate time periods. After completion of the reac-
tion, 5 ml of methanol was added, and the catalyst was separated by simple fil-
tration. Filtrate was added to 15 ml of cold water, and precipitates were filtered 
off and washed with the cold methanol-water mixture. Further purification is 
done by crystallization using methanol to obtain a pure product as a solid mate-
rial. 

4. Spectroscopic Data for the New Compounds 

Dimethyl 1,4-dihydro-2,6-dimethyl-4-phenylpyridine-3,5-dicarboxylate 
(2A): 

Appearance: white solid, Melting Point: 191˚C - 193˚C. 
1H NMR (400 MHz, CDCl3) δ 7.27 - 7.25 (m, 2H), 7.23-7.21 (m, 2H), 7.15 - 

7.11 (m, 1H), 5.65 (s, 1H), 5.00 (s, 1H), 3.64 (s, 6H), 2.34 (s, 6H) ppm. 13C{1H} 
NMR (101 MHz, CDCl3) δ 168.2, 147.5, 144.3, 128.2, 127.8, 126.3, 104.1, 51.1, 
39.4, 19.8 ppm. Mass (m/z): Mass (M + 1): 302.9.  

Dimethyl 4-(4-chlorophenyl)-1,4-dihydro-2,6-dimethylpyridine-3,5-icar- 
boxylate (2B): 

Appearance: white solid, Melting Point: 196˚C - 198˚C. 
1H NMR (400 MHz, CDCl3) δ 7.20 - 7.16 (m, 4H), 5.67 (s, 1H), 4.97 (s, 1H), 

3.64 (s, 6H), 2.33 (s, 6H) ppm. 13C{1H} NMR (101 MHz, CDCl3) δ 167.9, 146.1, 
144.4, 132.0, 129.2, 128.3, 103.8, 51.2, 39.1, 19.8 ppm. Mass (M + 1): Mass (M + 
1): 337.2. 

Dimethyl 4-(2-chlorophenyl)-1,4-dihydro-2,6-dimethylpyridine-3,5-dica- 
rboxylate (2C):  

Appearance: white solid, Melting Point: 144˚C - 146˚C. 
1H NMR (400 MHz, CDCl3) δ 7.37 - 7.35 (m, J = 7.7, 1.6 Hz, 1H), 7.23 (dd, J = 

7.9, 1.1 Hz, 1H), 7.12 (td, J = 7.6, 1.1 Hz, 1H), 7.03 (td, J = 7.8, 1.6 Hz, 1H), 5.69 
(s, 1H), 5.39 (s, 1H), 3.60 (s, 6H), 2.31 (s, 6H) ppm. 13C{1H} NMR (101 MHz, 
CDCl3) δ 168.1, 146.0, 144.2, 132.5, 131.3, 129.4, 127.4, 127.0, 104.1, 51.0, 37.3, 
19.6 ppm. Mass (M + 1): 337.1. 

Dimethyl 4-(4-fluorophenyl)-1,4-dihydro-2,6-dimethylpyridine-3,5-dica- 
rboxylate (2D): 

Appearance: off white solid, Melting Point: 171˚C - 173˚C. 
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1H NMR (400 MHz, CDCl3) δ 7.22 - 7.19 (m, 2H), 6.90 - 6.86 (m, 2H), 5.81 (s, 
1H), 4.97 (s, 1H), 3.64 (s, 6H), 2.32 (s, 6H) ppm. 13C{1H} NMR (101 MHz, 
CDCl3) δ 168.1, 161.5 (d, J = 243.7 Hz), 144.3, 143.4, 129.2 (d, J = 7.8 Hz), 114.8 
(d, J = 21.0 Hz), 104.0, 51.2, 38.8, 19.7 ppm. Mass (M + 1): 319.7. 

Dimethyl 1,4-dihydro-4-(4-methoxyphenyl)-2,6-dimethylpyridine-3,5-di- 
carboxylate (2E): 

Appearance: off white solid, Melting Point: 180˚C - 182˚C. 
1H NMR (400 MHz, CDCl3) δ 7.17 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 8.3 Hz, 2H), 

5.74 (s, 1H), 4.94 (s, 1H), 3.75 (s, 3H), 3.64 (s, 6H), 2.32 (s, 6H) ppm. 13C{1H} 
NMR (101 MHz, CDCl3) δ 168.2, 158.1, 144.0, 140.1, 128.7, 113.5, 104.3, 55.3, 
51.1, 38.6, 19.7 ppm. Mass (M + 1): 332.2. 

Dimethyl 1,4-dihydro-2,6-dimethyl-4-(thiophen-2-yl)pyridine-3,5-dicar- 
boxylate (2F): 

Appearance: pale yellow solid, Melting Point: 197-198˚C. 
1H NMR (400 MHz, CDCl3) δ 7.05 (dd, J = 5.1, 1.2 Hz, 1H), 6.86-6.84 (m, 

1H), 6.78-6.77 (m, 1H), 5.92 (s, 1H), 5.33 (s, 1H), 3.71 (s, 6H), 2.34 (s, 6H) ppm. 
13C{1H} NMR (101 MHz, CDCl3) δ 167.8, 151.5, 145.0, 126.6, 123.4, 123.1, 103.5, 
51.3, 34.4, 19.6 ppm. Mass (M + 1): 307.9. 

Dimethyl 1,4-dihydro-2,6-dimethyl-4-(4-nitrophenyl)pyridine-3,5-dicar- 
boxylate (2G): 

Appearance: yellow solid, Melting Point: 195˚C - 197˚C. 
1H NMR (400 MHz, CDCl3) δ 8.08 (d, J = 8.7 Hz, 2H), 7.43 (t, J = 5.6 Hz, 2H), 

5.81 (s, 1H), 5.10 (s, 1H), 3.64 (s, 6H), 2.35 (s, 6H) ppm. 13C{1H} NMR (101 
MHz, CDCl3) δ 167.6, 154.9, 146.5, 145.1, 128.7, 123.6, 103.1, 51.3, 40.0, 19.8 
ppm. Mass (M + 1): 347.1, 348.2. 

Dimethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicar- 
boxylate (2H): 

Appearance: pale yellow solid, Melting Point: 207˚C - 209˚C. 
1H NMR (400 MHz, CDCl3) δ 8.09 (t, J = 2.0 Hz, 1H), 8.01-7.98 (m, 1H), 7.63 

- 7.61 (m, 1H), 7.37 (t, J = 7.9 Hz, 1H), 5.86 (s, 1H), 5.10 (s, 1H), 3.64 (s, 6H), 
2.36 (s, 6H) ppm. 13C{1H} NMR (126 MHz, CDCl3) δ 167.6, 149.7, 148.5, 145.1, 
134.3, 128.9, 122.9, 121.6, 103.3, 51.3, 39.8, 19.8 ppm. Mass (M + 1): 347.2, 348.2. 

Dimethyl 1,4-dihydro-2,6-dimethyl-4-(1H-pyrrol-2-yl)pyridine-3,5-dica- 
rboxylate (2I): 

Appearance: green solid, Melting Point: 186˚C - 188˚C. 
1H NMR (400 MHz, CDCl3) δ 8.69 (s, 1H), 6.65-6.63 (m, 1H), 6.04 - 6.02 (m, 

1H), 5.72 (s, 2H), 5.04 (s, 1H), 3.71 (s, 6H), 2.30 (s, 6H) ppm. 13C{1H} NMR (101 
MHz, CDCl3) δ 168.7, 145.0, 136.9, 116.7, 107.7, 104.2, 102.1, 51.5, 32.4, 19.9 
ppm. Mass (M + Na): 314.2. 

Dimethyl 4-([1,1’-biphenyl]-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5- 
dicarboxylate (2J):  

Appearance: white solid, Melting Point: 225˚C - 227˚C. 
1H NMR (400 MHz, CDCl3) δ 7.55 - 7.53 (m, 2H), 7.45 - 7.38 (m, 4H), 7.34 - 
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7.27 (m, 3H), 5.76 (s, 1H), 5.05 (s, 1H), 3.66 (s, 6H), 2.35 (s, 6H) ppm. 13C{1H} 
NMR (126 MHz, CDCl3) δ 168.2, 146.6, 144.4, 141.3, 139.1, 128.8, 128.1, 127.1, 
127.0, 127.0, 103.9, 51.2, 39.1, 19.7 ppm. Mass (M + 1): 378.1, 379.2. 

Dimethyl 4-(3-bromopyridin-2-yl)-1,4-dihydro-2,6-dimethylpyridine-3,5- 
dicarboxylate (2K): 

Appearance: Off white solid, Melting Point: 191˚C - 192˚C. 
1H NMR (400 MHz, CDCl3) δ 7.09 - 6.74 (m, 1H), 5.67 (s, 1H), 5.17 (s, 1H), 

3.62 (s, 6H), 2.33 (s, 6H) ppm. 13C{1H} NMR (126 MHz, CDCl3) δ 168.1, 167.0, 
146.7, 141.6, 138.3, 126.4, 123.2, 100.8, 50.9, 43.2, 19.2 ppm. Mass (M/Z): 381.1. 

Dimethyl 4-(5-bromo-2-methoxyphenyl)-1,4-dihydro-2,6-dimethylpyrid- 
ine-3,5-dicarboxylate (2L): 

Appearance: off white solid, Melting Point: 198˚C - 200˚C. 
1H NMR (400 MHz, CDCl3) δ 7.21 - 7.18 (m, 2H), 6.68 (d, J = 8.5 Hz, 1H), 

5.68 (s, 1H), 5.25 (s, 1H), 3.79 (s, 3H), 3.62 (s, 6H), 2.30 (s, 6H) ppm. 13C{1H} 
NMR (101 MHz, CDCl3) δ 168.3, 156.1, 144.3, 137.8, 132.7, 130.2, 112.9, 112.8, 
102.8, 56.0, 51.1, 34.9, 19.5 ppm. Mass (M + 1): 412.1, 413. 

5. Conclusion 

We present a solvent-free catalytic method for synthesizing biologically relevant 
dihydropyridine derivatives from aromatic aldehydes, methyl acetoacetate, and 
aqueous ammonium. Key aspects of this protocol include 1) The use of a recyclable 
catalyst; 2) Short reaction times; 3) Broad substrate compatibility with excellent 
functional group tolerance, yielding compounds with potential medicinal activity. 
Additionally, recyclability studies demonstrate that the catalyst maintains nearly 
unchanged catalytic activity over multiple cycles without loss of efficacy. In or-
der to synthesis 1,4-dihydropyridine under environmentally friendly conditions, 
we have created stable and novel polyindole-TiO2 nanoparticles. This approach 
emphasizes the beneficial features such shorter reaction times, the removal of 
hazardous solvents and byproducts, quick work-up, and straightforward product 
separation. The nano-catalyst also demonstrated good reactivity and effective 
catalytic recyclability. 
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