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Abstract 
A lot of combinatorial objects have algebra and coalgebra structures and po-
sets are important combinatorial objects. In this paper, we construct algebra 
and coalgebra structures on the vector space spanned by posets. Firstly, by 
associativity and the unitary property, we prove that the vector space with the 
conjunction product is a graded algebra. Then by the definition of free alge-
bra, we prove that the algebra is free. Finally, by the coassociativity and the 
counitary property, we prove that the vector space with the unshuffle copro-
duct is a graded coalgebra. 
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1. Introduction 

A poset is a set with a binary relation satisfying reflexivity, antisymmetry and 
transitivity. Researches and generalizations on posets are very rich. The most 
famous result on posets is the decomposition theorem [1] proposed by Dilworth 
in 1950, also well-known as Dilworth’s Theorem, which has great combinatorial 
and order theoretical value. To learn more about Dilworth’s Theorem, please re-
fer to Fulkerson [2], Tverberg [3], Pretzel [4] and Galvin [5]. 

In 1964, Rota [6] made the Möbius function emerge in clear view as a funda-
mental invariant, which unifies both enumerative and structural aspects of the 
theory of partially ordered sets. In 1972, Stanley [7] studied ordered structures 
and partitions. Later, he proved several identities associated with the binomial 
posets [8]. In 1977, Trotter and Moore [9] studied the dimension of planar po-
sets and the dimension of trees. In 1988, Stanley [10] first introduced the diffe-
rential poset with combinatorial and algebraic properties. For more works on 
differential posets, see [11] [12] [13] [14] [15]. 

In 2005, Aguiar and Sottile [16] introduced the global descents of permuta-
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tions in the symmetric group nS . In 2020, based on the global descents, Zhao 
and Li [17] studied a new shuffle product шG  on permutations. Later, they [18] de-
fined a new product ◊  and a new coproduct *∆  on permutations, proved that 
( ), ,S µ◊  is a graded  -algebra and ( )*, ,S ν∆  is a graded  -coalgebra, 
where   is a field, and studied some properties of the structures. In 2021, Liu 
and Li [19] introduced the super-shuffle product and the cut-box coproduct on 
permutations and proved that ( ),ш,S µ  is a graded algebra and ( ), ,S ν◊∆  
is a graded coalgebra. These papers are helpful for us to study algebra and coal-
gebra on posets. 

In 2020, Aval, Bergeron and Machacek [20] defined a product and a copro-
duct on posets without proofs. In this paper, we prove that the vector space 
spanned by posets with these operations is an algebra and a coalgebra, respec-
tively. 

We start by recalling some basic definitions of algebra and coalgebra and 
some notations on posets in Section 2. In Section 3, we introduce the definitions 
of the conjunction product and the unshuffle coproduct on the vector space 
spanned by posets. Then we prove the vector space with the conjunction product 
is a free graded algebra. And the vector space with the unshuffle coproduct is a 
graded coalgebra. Thus, we construct algebra and coalgebra structures on posets. 
Finally, we make a summary of this paper in Section 4.  

2. Preliminaries 
2.1. Basic Definitions 

We recall some basic definitions of algebra and coalgebra; see [21] [22] for more 
details. Let R  be an associative commutative ring with identity. 

For an R -module A , we call ( ), ,A m µ  an R -algebra if there exist two 
maps :m A A A⊗ →  and : R Aµ →  such that the diagrams in Figure 1 are 
commutative. Here m  is called a product and µ  a unit. 

The R-algebra ( ), ,A m µ  is graded if 0 iiA A≥=⊕  and ( )s t s tm A A A +⊗ ⊆ , 
for all ,s t . 

We reverse all the arrows in Figure 1 to get the definition of coalgebra since 
algebra and coalgebra are dual concepts. 

For an R -module A , we call ( ), ,A ν∆  an R -coalgebra if there exist two 
maps : A A A∆ → ⊗  and : A Rν →  such that the diagrams in Figure 2 are 
commutative. Here ∆  is called a coproduct and ν  a counit.  

The R -coalgebra ( ), ,A ν∆  is graded if 0 iiA A≥=⊕  and  
( ) ( )n i n iiA A A −∆ ⊆ ⊗⊕ , for all n . 
A coalgebra A  is cocommutative if the diagram in Figure 3 commutes, 

where ( )a b b aτ ⊗ = ⊗ , for all ,a b  in A . 
Let V  be a vector space over field  . Denote the tensor algebra on V  by 

( ) 0
n

nT V V ⊗
≥=⊕ , where 0V ⊗ =   and 

 times
.n

n
V V V⊗ = ⊗ ⊗



  

Define the multiplication on ( )T V  by the concatenation product and unit  
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(a)                             (b) 

Figure 1. Associative law and unitary property. (a) Associative law; (b) Unitary property. 
 

    
(a)                            (b) 

Figure 2. Coassociative law and counitary property. (a) Coassociative law; (b) Counitary 
property. 
 

 

Figure 3. Commutativity. 
 

( ): T Vµ →  on ( )T V  by ( )a aµ = , for a∈ . Then the algebra  
( ) 0

n
nT V V ⊗
≥=⊕  is free on V  since it satisfies the following universal prop-

erty: for each  -algebra A  and each linear map :f V A→ , there exists a 
unique algebra homomorphism ( ):g T V A→  such that g fι =  where 

( ):V T Vι →  is the inclusion map. 

2.2. Basic Notations 

Now let’s recall some notations on posets; see [23] [24] for more details. 
A partial order relation is a binary relation satisfying reflexivity, antisymmetry 

and transitivity. A set P  together with a partial order relation P≤  is called a 
poset, denoted by ( ), PP ≤ . The set P  is called the ground set of poset ( ), PP ≤ . 
We denote the number of elements of P  by P . When the ground set is 
empty, we have an empty poset, denoted by  . When the partial order relation 
is obvious, P  can represent both the ground set and the poset. 

For distinct elements ,x y  in poset P , if Px y≤  and there is no element 
z  that differs from ,x y  and satisfies P Px z y≤ ≤ , then we say that y covers
x , denoted by Px y , and we also call ( ),x y  a cover relation in P . Define 
( )P  to be the set of all cover relations in P  by  

( ) ( ){ }, | , , .P x y x y x y P= ∈  

If ( )P  is given in poset P , then we can get the partial order relation P≤  
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corresponding to the cover relations through reflexivity, antisymmetry and tran-
sitivity. Obviously, ( )P  and P≤  are uniquely determined by each other. 

The two elements x  and y  in poset P  are called comparable, if either 

Px y≤  or Py x≤ . In a poset, it is not necessary that any two elements are 
comparable. When x  and y  are two elements of P  such that neither 

Px y≤  nor Py x≤ , they are called incomparable. 
To study posets more intuitively, we can represent posets by Hasse diagrams. 

A Hasse diagram is a graphical rendering of a poset displayed by the cover rela-
tions of the poset with an implied upward orientation. Drawing line segments 
between these elements of a poset follows these two rules: 

1) If Px y≤  in the poset, then the point representing x  is lower in the 
drawing than the point representing y . 

2) Drawing line segment between the points representing elements x  and 
y  of the poset if y  covers x . 

In addition, incomparable elements can be drawn on the same layer. 
For example, for set { }2,3,4P =  with ( ) ( ) ( ){ }2,3 , 3,4P = , i.e., 3 covers 2 

and 4 covers 3, according to transitivity, we have 2 4P≤ . Further, we get poset  

. Similarly, if { }1,2,3Q =  with ( ) ( ) ( ){ }1,3 , 2,3Q = , then poset 

. 

In poset P , an element x  is called maximal in P , if there is no other ele-
ment y  in P  satisfying Px y≤ . Similarly, x  is minimal if no other ele-
ment y  in P  satisfing Py x≤ . A partially ordered set may have more than 
one maximal or minimal elements. Hence, we denote ( )max P  as the set con-
taining all maximal elements in P  and ( )min P  containing all minimal ele-
ments in P . From the above example, we have ( ) { }max 4P = , ( ) { }min 2P = , 

( ) { }max 3Q =  and ( ) { }min 1,2Q = . 
Let P  and Q  be disjoint sets with partial orders P≤  and Q≤ , respective-

ly. Define T  to be the union of P  and Q  with partial order T≤  given by 
the cover relations  

( ) ( ) ( ) ( ) ( ) ( ){ }, | max , min .T P Q x y x P y Q= ∪ ∪ ∈ ∈    

We denote the poset T  as P Q< , which means <  is an operation for posets.  

Obviously, <  satisfies the associative law. For example, Let  and  

, then ( ) ( ) ( ){ }4,2 , 5,2P = , ( ) { }Q = ∅ , ( ) { }max 2P =  and 
( ) { }min 1,3Q = . Hence we have ( ) ( ) ( ) ( ) ( ){ }4,2 , 5,2 , 2,1 , 2,3T = , i.e.,  

. 

Denote n  to be the set of all posets on [ ] { }1,2, ,n n=  , where { }0 ε= . 
For example, when 3n = ,  
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Let 0 nn≥+=


   be the disjoint union of n , and 0 nn≥=⊕   , where 

n  is the linear space spanned by n  over field  . 
For a positive integer n , define ( ),n

nP
P↑

↑≤  as a poset by increasing each 
element in P  by n  satisfying  

( ) ( ) ,PnP
x n y n x y↑+ ≤ + ⇔ ≤  

for ,x y  in P . Similarly, define ( ),n
nP

P↓
↓≤  as a poset by reducing each ele-

ment in P  by n  satisfying  

( ) ( ) ,PnP
x n y n x y↓− ≤ − ⇔ ≤  

for ,x y  in P . For example, let , then  and . 

For a poset P  in n , we call n  a global split of P  if  

[ ] [ ] [ ]\ ,i n iP P P= <  

where 0 i n≤ ≤ . If a nonempty poset has no global splits except 0 and n , we 
call it an indecomposable poset. We denote n  as the subset of n  containing 
all indecomposable posets in n , and 1 nn≥+=



  . 
For a nonempty set of intergers { }1 2, , , nS s s s=   with 1 2 ns s s< < < , 

denote stS  as a mapping from S  to [ ]n  by ( )stS is i=  for each 1 i n≤ ≤ . 
Let ( ), PP ≤  be a poset, where P  is an interger set. We define  
( ) ( ) ( )( )stst , st ,P PP P≤ = ≤ , where ( )st P P=     and ( )st P≤  is the partial order 

on P    satisfying  

( ) ( ) ( )stst st ,P P PPi j i j≤ ⇔ ≤  

for any ,i j  in P . For convenience, we denote the ( )st , PP ≤  as ( )st P  when 
the partial order P≤  is obvious. We call ( )st P  the standard form of poset P .  

For example, . Obviously, ( )st ε ε= . 

Let K  be a subset of P . Define ( ), P KP ≤  as poset ( ), KK ≤ , where K≤  is 
the partial order on K  satisfying  

1 2 1 2 ,K Pk k k k≤ ⇔ ≤  

for any 1 2,k k  in K . For convenience, we denote ( ), P KP ≤  by KP  when the 
partial order P≤  is obvious, and call KP  the restriction of P  on K , and KP  a  

subposet of poset P . For example, let poset , then  

 

Obviously, { }1,2,3P , { }1,2,4P  and { }1,3P  are subposets of poset P . 
In particular, [ ]nP P=  and P∅ =  , for P  in n . 

3. Conjunction Product and Unshuffle Coproduct 

In 2020, Aval, Bergrron and Machacek [20] defined a product and coproduct on 
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posets, which are called the conjunction product and the unshuffle coproduct, 
respectively, without proofs. Here, we prove that the vector space spanned by 
posets with these operations is an algebra and a coalgebra. 

Define the conjunction product ∗  on   by  

,mP Q P Q↑∗ = <  

for P  in m  and Q  in n . Obviously, P Q∗  in m n+ , and the conjunc-
tion product ∗  is not commutive. 

Define the unit :µ →   by ( )1µ =  . 
Example 1. Let  and , then  

 

Theorem 1. ( ), ,µ∗  is a graded algebra. 
Proof It is easy to verify that µ  is a unit. 
Let iP  be in   with i iP n= , 1 3i≤ ≤ . By the definition of conjunction 

product ∗ , we have 1
1 2 1 2

nP P P P↑∗ = <  and 2
2 3 2 3

nP P P P↑∗ = < . Obviously, 

1 2P P∗  is in 
1 2n n+  and 2 3P P∗  is in 

2 3n n+ . Furthermore,  

( ) ( )1 1 2
1 2 3 1 2 3

n n nP P P P P P↑ ↑ +∗ ∗ = < <  

and  

( ) ( ) 1
2

1 2 3 1 2 3

nnP P P P P P
↑↑∗ ∗ = < <  

are both in 
1 2 3n n n+ + . We have  

( ) ( )
( )

( )
( )

1
2

1 1 2

1 1 2

1 2 3 1 2 3

1 2 3

1 2 3

1 2 3.

nn

n n n

n n n

P P P P P P

P P P

P P P

P P P

↑↑

↑ ↑ +

↑ ↑ +

∗ ∗ = < <

= < <

= < <

= ∗ ∗

 

From above, ∗  satisfies the associative law. Hence, ( ), ,µ∗  is an algebra. 
From the definitions of conjunction product ∗  and unit µ , we have  

m n m n+∗ ⊆      and ( ) 0µ =  . Hence, the algebra ( ), ,µ∗  is 
graded.   

Lemma 1. Define a linear mapping ( ):h T →    by  

1 1
0 0

,
nn

k kk k kk
k k

h x x x x
= =

 ⊗ ⊗ = ∗ ∗ 
 

∑⊕                  (1) 

where ( ) 0
00x

⊗
∈ =  , kix ∈  for 1, ,i k=   and ( )1h =  . Denote 

{ }1 2 1 2| , , , .n
n nx x x x x x⊗ = ⊗ ⊗ ⊗ ∈    

For any 

11 1 ,m
mx p p ⊗= ⊗ ⊗ ∈                       (2) 

and  
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21 2 ,n
ny p p ⊗= ⊗ ⊗ ∈                      (3) 

if x y≠ , then ( ) ( )h x h y≠ . 
Proof If x y≠ , then there exists z  such that 1 2i ip p=  for 1 1i z≤ ≤ −  

but 1 2z zp p≠ . We denote 1
11

z
iir p−

=
= ∑ , ( ) 1h x P=  and ( ) 2h y P= . If 

1 2z zp p= , then  

( )( ) ( )( )1 1 2 21, 1,st st .
z zz zr r p r r pP p p P

 + +   + +    
= ≠ =  

So ( ) ( )h x h y≠ . If 1 2z zp p< , then 1zr p+  is a split of ( )h x  but not a 
split of ( )h y . So ( ) ( )h x h y≠ . Similarly, if 1 2z zp p> , we also have 
( ) ( )h x h y≠ .   
Theorem 2. The algebra ( ), ,µ∗  is free on  . 
Proof It is sufficient to prove ( ), ,µ∗  is isomorphic to the tensor algebra 

( )T   through the mapping h  in (1). Obviously, h  is an algebra homo-
morphism. For any nonempty P  in  , let 0 10 ti i i n= < < < =  be all 
splits of P , then  

[ ]( ) [ ]( )( )0 1 11, 1,st st .
t ti i i ih P P P
−+ +⊗ ⊗ =  

Hence, h  is surjective. 
For 00 11 21 22 1 2n n nnx x x x x x x x= ⊕ ⊕ ⊗ ⊕ ⊕ ⊗ ⊗ ⊗   in ( )T  , where  

( ) 0
00x

⊗
∈ =   and kix ∈  for 1, ,i k=  , 1 k n≤ ≤ , suppose  

( ) 0,h x =                            (4) 

i.e.,  

( )
( ) ( ) ( ) ( )
00 11 21 22 1 2

00 11 21 22 1

0.

n n nn

n nn

h x x x x x x x

h x h x h x x h x x

⊕ ⊕ ⊗ ⊕ ⊕ ⊗ ⊗ ⊗

= + + ⊗ + + ⊗ ⊗

=

 

          (5) 

Obviously, any two terms in (5) are linearly independent because they have 
different numbers of splits. It means ( )00 0h x =  and  

( )1 0,k kkh x x⊗ ⊗ =                        (6) 

for all 1 k n≤ ≤ . By the associative law of tensor product, we have  

1
1

,
m

k kk j j
j

x x l x
=

⊗ ⊗ = ∑  

for some k
jx ⊗∈ , jl ∈  and 0m > , where i jx x≠  for i j≠ . Then  

( ) ( )1
1 1

.
m m

k kk j j j j
j j

h x x h l x l h x
= =

 
⊗ ⊗ = = 

 
∑ ∑

             (7) 

By Lemma 1, ( ){ }
1

m

j j
h x

=
 are linear independent. So 0jl =  for all 1 j m≤ ≤  

from (6) and (7). Then  

1
1

0,
m

k kk j j
j

x x l x
=

⊗ ⊗ = =∑  

for all 1 k m≤ ≤ . Hence, 0x =  in (4), i.e., h  is injective. Then ( )T≅    
is a free algebra on  .   
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Define the unshuffle coproduct ∆  on   by  

( )
[ ]

( ) [ ]( )\st st ,I n I
I n

P P P
⊆

∆ = ⊗∑  

where I  traverses all subsets of [ ]n , for any non-empty poset P  in n  and 
( )∆ = ⊗   . Obviously, the unshuffle coproduct ∆  is cocommutive. Define 

the counit :ν →   by  

( )
1, ,
0, otherwise,

P
Pν

=
= 



 

for P  in  . 

Example 2. Let , then 

 

Theorem 3. ( ), ,ν∆  is a graded coalgebra. 
Proof It is easy to verify that ν  is a counit. For P  in n , 

( )
[ ]

( ) [ ]( )\st st .I n I
I n

P P P
⊆

∆ = ⊗∑  

We have  

( ) ( ) ( )
[ ]

( ) [ ]( )

[ ]
( ) [ ]( )( )

[ ]
( )

[ ]
( ) [ ]( )( )

\

\

\ \
\

id id st st

st st

st st st

I n I
I n

I n I
I n

I J n I J
I n J n I

P P P

P P

P P P

⊆

⊆

⊆ ⊆

 
⊗∆ ∆ = ⊗∆ ⊗  

 

= ⊗∆

 
= ⊗ ⊗  

 

∑

∑

∑ ∑

 
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and 

( ) ( ) ( )
[ ]

( ) [ ]( )

[ ]
( )( ) [ ]( )

[ ]
( ) ( ) [ ]( )

[ ]
( ) ( ) [ ]( )

[ ]
( )

[ ]
( ) [ ]( )( )

\

\

\ \

\ \

\ \
\

id id st st

st st

st st st

st st st

st st st .

I n I
I n

I n I
I n

A I A n I
I n A I

A I A n I
A I I n

A B n A B
A n B n A

P P P

P P

P P P

P P P

P P P

⊆

⊆

⊆ ⊆

⊆ ⊆

⊆ ⊆

 
∆⊗ ∆ = ∆⊗ ⊗  

 

= ∆ ⊗

 
= ⊗ ⊗ 

 

= ⊗ ⊗

 
= ⊗ ⊗  

 

∑

∑

∑ ∑

∑ ∑

∑ ∑

 

 

Therefore  

( ) ( ) ( ) ( )id id .P P⊗∆ ∆ = ∆⊗ ∆   

From above, ∆  satisfies the coassociative law. Hence, ( ), ,ν∆  is a coal-
gebra. 

From the definitions of ∆  and ν , we have ( ) ( )0
n

n i n ii −=∆ ⊆ ⊗⊕      
and ( )0ν =  . Hence, the coalgebra ( ), ,ν∆  is graded.  

4. Conclusions 

Let   be the vector space spanned by posets. Firstly, we give the definitions 
of conjunction product ∗  and unshuffle coproduct ∆  on  . Then we 
prove that the conjunction product ∗  satisfies the associativity. So ( ), ,µ∗  
is an algebra. Futhermore, we prove that ( ), ,µ∗  is graded and free on  , 
where   contains all indecomposable posets in  . Finally, we prove that 
unshuffle coproduct ∆  satisfies the coassociativity and ( ), ,ν∆  is a graded 
coalgebra. 
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